Minor seventh chord
In music, a minor seventh chord is any nondominant seventh chord where the "third" note is a minor third above the root.
Most typically, minor seventh chord refers to where the "seventh" note is a minor seventh above the root (a fifth above the third note). This is more precisely known as a minor/minor seventh chord, and it can be represented as either as m7 or −7, or in integer notation, 0, 3, 7, 10. In a natural minor scale, this chord is on the tonic, subdominant, and dominant[1]degrees. In a harmonic minor scale, this chord is on the subdominant[1] degrees. In an ascending melodic minor scale, this chord is on the supertonic[1] degree. In a major scale, this chord is on the second (supertonic seventh), third (mediant) or sixth (submediant)[2] degrees. For instance the ii7 in the ii–V–I turnaround.
Example of tonic minor seventh chords include LaBelle's "Lady Marmalade", Roberta Flack's "Killing Me Softly with His Song", The Doobie Brothers' "Long Train Runnin'", Chic's "Le Freak", Lipps Inc.'s "Funkytown", and the Eagles' "One Of These Nights".[3]
Component intervals from root | |
---|---|
minor seventh | |
perfect fifth | |
minor third | |
root | |
Tuning | |
10:12:15:18[4] | |
Forte no. / Complement | |
4-26 / 8-26 |
When the seventh note is a major seventh above the root, it is called a minor/major seventh chord. Its harmonic function is similar to that of a "normal" minor seventh, as is the minor seven flat five or half-diminished chord – but in each case, the altered tone (seventh or fifth, respectively) creates a different feeling which is exploited in modulations and to use leading-tones.
Contents
1 Minor seventh as virtual augmented sixth chord
2 Minor seventh chord table
3 Minor 7 Chords for Guitarists
4 Sources
Minor seventh as virtual augmented sixth chord
The minor seventh chord may also have its interval of minor seventh (between root and seventh degree, i.e.: C–B♭ in C–E♭–G–B♭) rewritten as an augmented sixth C–E♭–G–A♯.[5] Rearranging and transposing, this gives A♭ C♭ E♭ F♯ , a virtual minor version of the German augmented sixth chord.[6] Again like the typical augmented sixth, this enharmonic interpretation gives on a resolution irregular for the minor seventh but normal for the augmented sixth chord, where the 2 voices at the enharmonic major second converge to unison or diverge to octave.[7]
Minor seventh chord table
Chord Root Minor third Perfect fifth Minor seventh Cm7 C E♭ G B♭ C♯m7 C♯ E G♯ B D♭m7 D♭ F♭ (E) A♭ C♭ (B) Dm7 D F A C D♯m7 D♯ F♯ A♯ C♯ E♭m7 E♭ G♭ B♭ D♭ Em7 E G B D Fm7 F A♭ C E♭ F♯m7 F♯ A C♯ E G♭m7 G♭ B (A) D♭ F♭ (E) Gm7 G B♭ D F G♯m7 G♯ B D♯ F♯ A♭m7 A♭ C♭ (B) E♭ G♭ Am7 A C E G A♯m7 A♯ C♯ E♯ (F) G♯ B♭m7 B♭ D♭ F A♭ Bm7 B D F♯ A
The just minor seventh chord is tuned in the ratios 10:12:15:18.[8] Play (help·info) This may be found on iii, vi, and vii.[9] Another tuning may be in the ratios 48:40:32:27.[10] Play (help·info)
Minor 7 Chords for Guitarists
(for a guitar in Standard tuning, the low E is on the left, the number is the fret)
Am7: x02010
Bm7: xx7777
Cm7: xx1313
Dm7: xx0211
Em7: xx0987
Fm7: xx1111
Gm7: xx3333
[11][12][13]
Sources
^ abcd Benward & Saker (2003). Music: In Theory and Practice, Vol. I, p.230. Seventh Edition. .mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
ISBN 978-0-07-294262-0.
^ Benward & Saker (2003), p.229.
^ Stephenson, Ken (2002). What to Listen for in Rock: A Stylistic Analysis, p.83.
ISBN 978-0-300-09239-4.
^ Shirlaw, Matthew (1900). The Theory of Harmony, p.86.
ISBN 978-1-4510-1534-8.
^ Ouseley, Frederick. A. Gore (1868). A Treatise on Harmony, pg. 137, Oxford, Clarendon Press.
^ Ouseley, Frederick. A. Gore (1868). A Treatise on Harmony, pg. 143ff, Oxford, Clarendon Press.
^ Christ, William (1966). Materials and Structure of Music, v.2, p. 154. Englewood Cliffs: Prentice-Hall. LOC 66-14354.
^ David Wright (2009). Mathematics and Music, p.141.
ISBN 978-0-8218-4873-9.
^ Wright, David (2009). Mathematics and Music, p.140-41.
ISBN 978-0-8218-4873-9.
^ François-Joseph Fétis and Mary I. Arlin (1994). Esquisse de l'histoire de l'harmonie, p.97n55.
ISBN 0-945193-51-3.
^ http://www.gootar.com/guitar/index.html
^ https://jguitar.com/chordlisting?chord=Minor+7th
^ https://audiopologie.wordpress.com/the-official-guide-to-reading-chord-charts-in-space/