How to plot multiple ROC curves in one plot with legend and AUC scores in python?

How to plot multiple ROC curves in one plot with legend and AUC scores in python?



I am building 2 models.



Model 1


modelgb = GradientBoostingClassifier()
modelgb.fit(x_train,y_train)
predsgb = modelgb.predict_proba(x_test)[:,1]
metrics.roc_auc_score(y_test,predsgb, average='macro', sample_weight=None)



Model 2


model = LogisticRegression()
model = model.fit(x_train,y_train)
predslog = model.predict_proba(x_test)[:,1]
metrics.roc_auc_score(y_test,predslog, average='macro', sample_weight=None)



How do i plot both the ROC curves in one plot , with a legend & text of AUC scores for each model ?






which library are you using?

– Julien
Mar 20 '17 at 2:25






i have matplotlib , however whatever you can suggest - i can import the relevant library

– Pb89
Mar 20 '17 at 2:40






I was asking for the model...

– Julien
Mar 20 '17 at 3:11






sklearn.ensemble for GBM and sklearn.linear_model for Logistic

– Pb89
Mar 20 '17 at 3:12





2 Answers
2



Try adapting this to your data:


from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt

plt.figure(0).clf()

pred = np.random.rand(1000)
label = np.random.randint(2, size=1000)
fpr, tpr, thresh = metrics.roc_curve(label, pred)
auc = metrics.roc_auc_score(label, pred)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))

pred = np.random.rand(1000)
label = np.random.randint(2, size=1000)
fpr, tpr, thresh = metrics.roc_curve(label, pred)
auc = metrics.roc_auc_score(label, pred)
plt.plot(fpr,tpr,label="data 2, auc="+str(auc))

plt.legend(loc=0)



Just by adding the models to the list will plot multiple ROC curves in one plot. Hopefully this works for you!


from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import GradientBoostingClassifier
from sklearn import metrics
import matplotlib.pyplot as plt

plt.figure()

# Add the models to the list that you want to view on the ROC plot
models = [

'label': 'Logistic Regression',
'model': LogisticRegression(),
,

'label': 'Gradient Boosting',
'model': GradientBoostingClassifier(),

]

# Below for loop iterates through your models list
for m in models:
model = m['model'] # select the model
model.fit(x_train, y_train) # train the model
y_pred=model.predict(x_test) # predict the test data
# Compute False postive rate, and True positive rate
fpr, tpr, thresholds = metrics.roc_curve(y_test, model.predict_proba(x_test)[:,1])
# Calculate Area under the curve to display on the plot
auc = metrics.roc_auc_score(y_test,model.predict(x_test))
# Now, plot the computed values
plt.plot(fpr, tpr, label='%s ROC (area = %0.2f)' % (m['label'], auc))
# Custom settings for the plot
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('1-Specificity(False Positive Rate)')
plt.ylabel('Sensitivity(True Positive Rate)')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show() # Display






Please explain why this answers the question. It will help more people that way.

– Mozahler
Sep 13 '18 at 21:34



Thanks for contributing an answer to Stack Overflow!



But avoid



To learn more, see our tips on writing great answers.



Required, but never shown



Required, but never shown




By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.

Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

Crossroads (UK TV series)

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế