Separability of compact quantum groups
Separability of compact quantum groups
In the theory of compact quantum groups due Woronowicz, we assume usually that the C*-algebra of the compact quantum group is separable. Is the assumption essential in the theory? Will it eventually make sense to develop the theory of nonseparable compact quantum groups? What has gone wrong?
1 Answer
1
A Haar measure on a compact quantum group without requiring separability was constructed in The Haar measure on a compact quantum group (1995).
Thanks for contributing an answer to MathOverflow!
But avoid …
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Required, but never shown
Required, but never shown
By clicking "Post Your Answer", you agree to our terms of service, privacy policy and cookie policy
$begingroup$
Carlo has given a reference to a general framework by van Daele, but it is worth noting that the reduced $rm C^*$-algebra of any discrete group has always been recognized as an example of a compact quantum group (in fact, a compact Kac algebra) and this will be non-separable as soon as the discrete group is uncountable
$endgroup$
– Yemon Choi
Sep 15 '18 at 12:42