Calculating NDVI per region, month & year with Google Earth Engine?










0















I want to calculate the mean NDVI per region (admin level 3, also called woreda), month and year. So my end result would look something like this:



regions year month NDVI 
---------------------------------
region_1 2010 1 0.5
region_1 2010 2 -0.6
region_1 2010 3 0.7
region_1 2010 4 -0.3
region_1 2010 5 0.4
region_1 2010 6 -0.5
region_1 2010 7 0.5
region_1 2010 8 -0.7
region_1 2010 9 0.8
region_1 2010 10 -0.55
region_1 2010 11 -0.3
region_1 2010 12 -0.2
region_2 2010 1 0.5
region_2 2010 2 -0.6
region_2 2010 3 0.7
region_2 2010 4 -0.3
region_2 2010 5 0.4
region_2 2010 6 -0.5
region_2 2010 7 0.5
region_2 2010 8 -0.7
region_2 2010 9 0.8
region_2 2010 10 -0.55
region_2 2010 11 -0.3
region_2 2010 12 -0.2
... ... ... ...


My code basically does this for a predetermined region in the var modisNDVI. However I want my code to be able to do this for 2010 untill 2015, for each month for each region.



How can I do this without writing more for loops (the iterating through the years and months)?



Should I be using reduceRegion or .map() in order to skip (all) the for loops?



I've made an attempt to use reduceRegions but failed to apply this to an imageCollection.



// import data
var region = ee.FeatureCollection("ft:1zRUOJL1LYCPJj-mjP6ZRx8sxYKNH8EwDw3EPP66K"),
modisNDVI = ee.ImageCollection("MODIS/MCD43A4_006_NDVI");

// Get NDVI
var modisNDVI = ee.ImageCollection(modisNDVI.filterDate('2015-01-01', '2015-06-01'));
var woredaNames = region.aggregate_array("HRpcode")

// do something so I can get monthly data for each year (2010-2015) for earch woreda (690)
// I don't want to write another for loop for the year and month what is a more optimized way?

// Processing all the 690 takes long, for this example I've used 10 woreda's
for (var woreda=0; woreda < 10 ;woreda++)

// Focus on one region:
var focusRegion = region.filter(ee.Filter.eq('system:index', String(woreda)));

// Clip modis image on focused region:
var focus_NDVI_clip = modisNDVI.mean().clip(focusRegion);

// aggregate mean over geometry from focused region:
var mean_dict = focus_NDVI_clip.reduceRegion(
reducer: ee.Reducer.mean(),
geometry: focusRegion.geometry(),
scale: 500,
);

// Append index to mean_dictionary and print it (eventually this should turn into a list):
var woreda_code = ee.List(woredaNames).get(woreda);
mean_dict = mean_dict.set('Woreda_code', ee.String(woreda_code));
print(mean_dict);









share|improve this question






















  • Cross-posted as gis.stackexchange.com/q/301447/115

    – PolyGeo
    Dec 12 '18 at 7:38















0















I want to calculate the mean NDVI per region (admin level 3, also called woreda), month and year. So my end result would look something like this:



regions year month NDVI 
---------------------------------
region_1 2010 1 0.5
region_1 2010 2 -0.6
region_1 2010 3 0.7
region_1 2010 4 -0.3
region_1 2010 5 0.4
region_1 2010 6 -0.5
region_1 2010 7 0.5
region_1 2010 8 -0.7
region_1 2010 9 0.8
region_1 2010 10 -0.55
region_1 2010 11 -0.3
region_1 2010 12 -0.2
region_2 2010 1 0.5
region_2 2010 2 -0.6
region_2 2010 3 0.7
region_2 2010 4 -0.3
region_2 2010 5 0.4
region_2 2010 6 -0.5
region_2 2010 7 0.5
region_2 2010 8 -0.7
region_2 2010 9 0.8
region_2 2010 10 -0.55
region_2 2010 11 -0.3
region_2 2010 12 -0.2
... ... ... ...


My code basically does this for a predetermined region in the var modisNDVI. However I want my code to be able to do this for 2010 untill 2015, for each month for each region.



How can I do this without writing more for loops (the iterating through the years and months)?



Should I be using reduceRegion or .map() in order to skip (all) the for loops?



I've made an attempt to use reduceRegions but failed to apply this to an imageCollection.



// import data
var region = ee.FeatureCollection("ft:1zRUOJL1LYCPJj-mjP6ZRx8sxYKNH8EwDw3EPP66K"),
modisNDVI = ee.ImageCollection("MODIS/MCD43A4_006_NDVI");

// Get NDVI
var modisNDVI = ee.ImageCollection(modisNDVI.filterDate('2015-01-01', '2015-06-01'));
var woredaNames = region.aggregate_array("HRpcode")

// do something so I can get monthly data for each year (2010-2015) for earch woreda (690)
// I don't want to write another for loop for the year and month what is a more optimized way?

// Processing all the 690 takes long, for this example I've used 10 woreda's
for (var woreda=0; woreda < 10 ;woreda++)

// Focus on one region:
var focusRegion = region.filter(ee.Filter.eq('system:index', String(woreda)));

// Clip modis image on focused region:
var focus_NDVI_clip = modisNDVI.mean().clip(focusRegion);

// aggregate mean over geometry from focused region:
var mean_dict = focus_NDVI_clip.reduceRegion(
reducer: ee.Reducer.mean(),
geometry: focusRegion.geometry(),
scale: 500,
);

// Append index to mean_dictionary and print it (eventually this should turn into a list):
var woreda_code = ee.List(woredaNames).get(woreda);
mean_dict = mean_dict.set('Woreda_code', ee.String(woreda_code));
print(mean_dict);









share|improve this question






















  • Cross-posted as gis.stackexchange.com/q/301447/115

    – PolyGeo
    Dec 12 '18 at 7:38













0












0








0








I want to calculate the mean NDVI per region (admin level 3, also called woreda), month and year. So my end result would look something like this:



regions year month NDVI 
---------------------------------
region_1 2010 1 0.5
region_1 2010 2 -0.6
region_1 2010 3 0.7
region_1 2010 4 -0.3
region_1 2010 5 0.4
region_1 2010 6 -0.5
region_1 2010 7 0.5
region_1 2010 8 -0.7
region_1 2010 9 0.8
region_1 2010 10 -0.55
region_1 2010 11 -0.3
region_1 2010 12 -0.2
region_2 2010 1 0.5
region_2 2010 2 -0.6
region_2 2010 3 0.7
region_2 2010 4 -0.3
region_2 2010 5 0.4
region_2 2010 6 -0.5
region_2 2010 7 0.5
region_2 2010 8 -0.7
region_2 2010 9 0.8
region_2 2010 10 -0.55
region_2 2010 11 -0.3
region_2 2010 12 -0.2
... ... ... ...


My code basically does this for a predetermined region in the var modisNDVI. However I want my code to be able to do this for 2010 untill 2015, for each month for each region.



How can I do this without writing more for loops (the iterating through the years and months)?



Should I be using reduceRegion or .map() in order to skip (all) the for loops?



I've made an attempt to use reduceRegions but failed to apply this to an imageCollection.



// import data
var region = ee.FeatureCollection("ft:1zRUOJL1LYCPJj-mjP6ZRx8sxYKNH8EwDw3EPP66K"),
modisNDVI = ee.ImageCollection("MODIS/MCD43A4_006_NDVI");

// Get NDVI
var modisNDVI = ee.ImageCollection(modisNDVI.filterDate('2015-01-01', '2015-06-01'));
var woredaNames = region.aggregate_array("HRpcode")

// do something so I can get monthly data for each year (2010-2015) for earch woreda (690)
// I don't want to write another for loop for the year and month what is a more optimized way?

// Processing all the 690 takes long, for this example I've used 10 woreda's
for (var woreda=0; woreda < 10 ;woreda++)

// Focus on one region:
var focusRegion = region.filter(ee.Filter.eq('system:index', String(woreda)));

// Clip modis image on focused region:
var focus_NDVI_clip = modisNDVI.mean().clip(focusRegion);

// aggregate mean over geometry from focused region:
var mean_dict = focus_NDVI_clip.reduceRegion(
reducer: ee.Reducer.mean(),
geometry: focusRegion.geometry(),
scale: 500,
);

// Append index to mean_dictionary and print it (eventually this should turn into a list):
var woreda_code = ee.List(woredaNames).get(woreda);
mean_dict = mean_dict.set('Woreda_code', ee.String(woreda_code));
print(mean_dict);









share|improve this question














I want to calculate the mean NDVI per region (admin level 3, also called woreda), month and year. So my end result would look something like this:



regions year month NDVI 
---------------------------------
region_1 2010 1 0.5
region_1 2010 2 -0.6
region_1 2010 3 0.7
region_1 2010 4 -0.3
region_1 2010 5 0.4
region_1 2010 6 -0.5
region_1 2010 7 0.5
region_1 2010 8 -0.7
region_1 2010 9 0.8
region_1 2010 10 -0.55
region_1 2010 11 -0.3
region_1 2010 12 -0.2
region_2 2010 1 0.5
region_2 2010 2 -0.6
region_2 2010 3 0.7
region_2 2010 4 -0.3
region_2 2010 5 0.4
region_2 2010 6 -0.5
region_2 2010 7 0.5
region_2 2010 8 -0.7
region_2 2010 9 0.8
region_2 2010 10 -0.55
region_2 2010 11 -0.3
region_2 2010 12 -0.2
... ... ... ...


My code basically does this for a predetermined region in the var modisNDVI. However I want my code to be able to do this for 2010 untill 2015, for each month for each region.



How can I do this without writing more for loops (the iterating through the years and months)?



Should I be using reduceRegion or .map() in order to skip (all) the for loops?



I've made an attempt to use reduceRegions but failed to apply this to an imageCollection.



// import data
var region = ee.FeatureCollection("ft:1zRUOJL1LYCPJj-mjP6ZRx8sxYKNH8EwDw3EPP66K"),
modisNDVI = ee.ImageCollection("MODIS/MCD43A4_006_NDVI");

// Get NDVI
var modisNDVI = ee.ImageCollection(modisNDVI.filterDate('2015-01-01', '2015-06-01'));
var woredaNames = region.aggregate_array("HRpcode")

// do something so I can get monthly data for each year (2010-2015) for earch woreda (690)
// I don't want to write another for loop for the year and month what is a more optimized way?

// Processing all the 690 takes long, for this example I've used 10 woreda's
for (var woreda=0; woreda < 10 ;woreda++)

// Focus on one region:
var focusRegion = region.filter(ee.Filter.eq('system:index', String(woreda)));

// Clip modis image on focused region:
var focus_NDVI_clip = modisNDVI.mean().clip(focusRegion);

// aggregate mean over geometry from focused region:
var mean_dict = focus_NDVI_clip.reduceRegion(
reducer: ee.Reducer.mean(),
geometry: focusRegion.geometry(),
scale: 500,
);

// Append index to mean_dictionary and print it (eventually this should turn into a list):
var woreda_code = ee.List(woredaNames).get(woreda);
mean_dict = mean_dict.set('Woreda_code', ee.String(woreda_code));
print(mean_dict);






javascript for-loop optimization google-earth-engine






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 13 '18 at 12:20









VindicareVindicare

184




184












  • Cross-posted as gis.stackexchange.com/q/301447/115

    – PolyGeo
    Dec 12 '18 at 7:38

















  • Cross-posted as gis.stackexchange.com/q/301447/115

    – PolyGeo
    Dec 12 '18 at 7:38
















Cross-posted as gis.stackexchange.com/q/301447/115

– PolyGeo
Dec 12 '18 at 7:38





Cross-posted as gis.stackexchange.com/q/301447/115

– PolyGeo
Dec 12 '18 at 7:38












1 Answer
1






active

oldest

votes


















0














First of all, you should avoid using for loops on Earth Engine at all cost, it just bogs the system down and is not good for everyone (see the Looping section on this page). You can use nested mapping to loop over the feature collection and then all of the time periods to extract the information you need:



// import data
var region = ee.FeatureCollection("ft:1zRUOJL1LYCPJj-mjP6ZRx8sxYKNH8EwDw3EPP66K"),
modisNDVI = ee.ImageCollection("MODIS/MCD43A4_006_NDVI");

var startDate = ee.Date('2010-01-01'); // set analysis start time
var endDate = ee.Date('2010-12-31'); // set analysis end time

// calculate the number of months to process
var nMonths = ee.Number(endDate.difference(startDate,'month')).round();

var result = region.map(function(feature)
// map over each month
var timeDict = ee.List.sequence(0,nMonths).map(function (n)
// calculate the offset from startDate
var ini = startDate.advance(n,'month');
// advance just one month
var end = ini.advance(1,'month');
// filter and reduce
var data = modisNDVI.filterDate(ini,end).mean().reduceRegion(
reducer: ee.Reducer.mean(),
geometry: feature.geometry(),
scale: 1000
);
// return zonal mean with a time key
return data.combine(ee.Dictionary('time':ini));
);
// return feature with a timeseries property and results
return feature.set('timeseries',timeDict);
);

// print to see if it is doing what we expect...
print(result.select(["HRpcode",'timeseries']));

// Export the data to a table for further analysis
Export.table.toDrive(
collection:result,
description:"tester",
fileFormat:"CSV",
selectors:["HRpcode","timeseries"]
)


Link to code: https://code.earthengine.google.com/abf5eeb5c203310c11bf45c6714ae731



The results formatting may be a little funky in this implementation with the result being a feature collection with dictionaries as properties and not an array or table...but, hopefully this either gives you what you need or gives you a means to get what you need.






share|improve this answer
























    Your Answer






    StackExchange.ifUsing("editor", function ()
    StackExchange.using("externalEditor", function ()
    StackExchange.using("snippets", function ()
    StackExchange.snippets.init();
    );
    );
    , "code-snippets");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "1"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53280885%2fcalculating-ndvi-per-region-month-year-with-google-earth-engine%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    First of all, you should avoid using for loops on Earth Engine at all cost, it just bogs the system down and is not good for everyone (see the Looping section on this page). You can use nested mapping to loop over the feature collection and then all of the time periods to extract the information you need:



    // import data
    var region = ee.FeatureCollection("ft:1zRUOJL1LYCPJj-mjP6ZRx8sxYKNH8EwDw3EPP66K"),
    modisNDVI = ee.ImageCollection("MODIS/MCD43A4_006_NDVI");

    var startDate = ee.Date('2010-01-01'); // set analysis start time
    var endDate = ee.Date('2010-12-31'); // set analysis end time

    // calculate the number of months to process
    var nMonths = ee.Number(endDate.difference(startDate,'month')).round();

    var result = region.map(function(feature)
    // map over each month
    var timeDict = ee.List.sequence(0,nMonths).map(function (n)
    // calculate the offset from startDate
    var ini = startDate.advance(n,'month');
    // advance just one month
    var end = ini.advance(1,'month');
    // filter and reduce
    var data = modisNDVI.filterDate(ini,end).mean().reduceRegion(
    reducer: ee.Reducer.mean(),
    geometry: feature.geometry(),
    scale: 1000
    );
    // return zonal mean with a time key
    return data.combine(ee.Dictionary('time':ini));
    );
    // return feature with a timeseries property and results
    return feature.set('timeseries',timeDict);
    );

    // print to see if it is doing what we expect...
    print(result.select(["HRpcode",'timeseries']));

    // Export the data to a table for further analysis
    Export.table.toDrive(
    collection:result,
    description:"tester",
    fileFormat:"CSV",
    selectors:["HRpcode","timeseries"]
    )


    Link to code: https://code.earthengine.google.com/abf5eeb5c203310c11bf45c6714ae731



    The results formatting may be a little funky in this implementation with the result being a feature collection with dictionaries as properties and not an array or table...but, hopefully this either gives you what you need or gives you a means to get what you need.






    share|improve this answer





























      0














      First of all, you should avoid using for loops on Earth Engine at all cost, it just bogs the system down and is not good for everyone (see the Looping section on this page). You can use nested mapping to loop over the feature collection and then all of the time periods to extract the information you need:



      // import data
      var region = ee.FeatureCollection("ft:1zRUOJL1LYCPJj-mjP6ZRx8sxYKNH8EwDw3EPP66K"),
      modisNDVI = ee.ImageCollection("MODIS/MCD43A4_006_NDVI");

      var startDate = ee.Date('2010-01-01'); // set analysis start time
      var endDate = ee.Date('2010-12-31'); // set analysis end time

      // calculate the number of months to process
      var nMonths = ee.Number(endDate.difference(startDate,'month')).round();

      var result = region.map(function(feature)
      // map over each month
      var timeDict = ee.List.sequence(0,nMonths).map(function (n)
      // calculate the offset from startDate
      var ini = startDate.advance(n,'month');
      // advance just one month
      var end = ini.advance(1,'month');
      // filter and reduce
      var data = modisNDVI.filterDate(ini,end).mean().reduceRegion(
      reducer: ee.Reducer.mean(),
      geometry: feature.geometry(),
      scale: 1000
      );
      // return zonal mean with a time key
      return data.combine(ee.Dictionary('time':ini));
      );
      // return feature with a timeseries property and results
      return feature.set('timeseries',timeDict);
      );

      // print to see if it is doing what we expect...
      print(result.select(["HRpcode",'timeseries']));

      // Export the data to a table for further analysis
      Export.table.toDrive(
      collection:result,
      description:"tester",
      fileFormat:"CSV",
      selectors:["HRpcode","timeseries"]
      )


      Link to code: https://code.earthengine.google.com/abf5eeb5c203310c11bf45c6714ae731



      The results formatting may be a little funky in this implementation with the result being a feature collection with dictionaries as properties and not an array or table...but, hopefully this either gives you what you need or gives you a means to get what you need.






      share|improve this answer



























        0












        0








        0







        First of all, you should avoid using for loops on Earth Engine at all cost, it just bogs the system down and is not good for everyone (see the Looping section on this page). You can use nested mapping to loop over the feature collection and then all of the time periods to extract the information you need:



        // import data
        var region = ee.FeatureCollection("ft:1zRUOJL1LYCPJj-mjP6ZRx8sxYKNH8EwDw3EPP66K"),
        modisNDVI = ee.ImageCollection("MODIS/MCD43A4_006_NDVI");

        var startDate = ee.Date('2010-01-01'); // set analysis start time
        var endDate = ee.Date('2010-12-31'); // set analysis end time

        // calculate the number of months to process
        var nMonths = ee.Number(endDate.difference(startDate,'month')).round();

        var result = region.map(function(feature)
        // map over each month
        var timeDict = ee.List.sequence(0,nMonths).map(function (n)
        // calculate the offset from startDate
        var ini = startDate.advance(n,'month');
        // advance just one month
        var end = ini.advance(1,'month');
        // filter and reduce
        var data = modisNDVI.filterDate(ini,end).mean().reduceRegion(
        reducer: ee.Reducer.mean(),
        geometry: feature.geometry(),
        scale: 1000
        );
        // return zonal mean with a time key
        return data.combine(ee.Dictionary('time':ini));
        );
        // return feature with a timeseries property and results
        return feature.set('timeseries',timeDict);
        );

        // print to see if it is doing what we expect...
        print(result.select(["HRpcode",'timeseries']));

        // Export the data to a table for further analysis
        Export.table.toDrive(
        collection:result,
        description:"tester",
        fileFormat:"CSV",
        selectors:["HRpcode","timeseries"]
        )


        Link to code: https://code.earthengine.google.com/abf5eeb5c203310c11bf45c6714ae731



        The results formatting may be a little funky in this implementation with the result being a feature collection with dictionaries as properties and not an array or table...but, hopefully this either gives you what you need or gives you a means to get what you need.






        share|improve this answer















        First of all, you should avoid using for loops on Earth Engine at all cost, it just bogs the system down and is not good for everyone (see the Looping section on this page). You can use nested mapping to loop over the feature collection and then all of the time periods to extract the information you need:



        // import data
        var region = ee.FeatureCollection("ft:1zRUOJL1LYCPJj-mjP6ZRx8sxYKNH8EwDw3EPP66K"),
        modisNDVI = ee.ImageCollection("MODIS/MCD43A4_006_NDVI");

        var startDate = ee.Date('2010-01-01'); // set analysis start time
        var endDate = ee.Date('2010-12-31'); // set analysis end time

        // calculate the number of months to process
        var nMonths = ee.Number(endDate.difference(startDate,'month')).round();

        var result = region.map(function(feature)
        // map over each month
        var timeDict = ee.List.sequence(0,nMonths).map(function (n)
        // calculate the offset from startDate
        var ini = startDate.advance(n,'month');
        // advance just one month
        var end = ini.advance(1,'month');
        // filter and reduce
        var data = modisNDVI.filterDate(ini,end).mean().reduceRegion(
        reducer: ee.Reducer.mean(),
        geometry: feature.geometry(),
        scale: 1000
        );
        // return zonal mean with a time key
        return data.combine(ee.Dictionary('time':ini));
        );
        // return feature with a timeseries property and results
        return feature.set('timeseries',timeDict);
        );

        // print to see if it is doing what we expect...
        print(result.select(["HRpcode",'timeseries']));

        // Export the data to a table for further analysis
        Export.table.toDrive(
        collection:result,
        description:"tester",
        fileFormat:"CSV",
        selectors:["HRpcode","timeseries"]
        )


        Link to code: https://code.earthengine.google.com/abf5eeb5c203310c11bf45c6714ae731



        The results formatting may be a little funky in this implementation with the result being a feature collection with dictionaries as properties and not an array or table...but, hopefully this either gives you what you need or gives you a means to get what you need.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Dec 5 '18 at 7:27

























        answered Dec 5 '18 at 7:20









        Kel MarkertKel Markert

        1163




        1163





























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53280885%2fcalculating-ndvi-per-region-month-year-with-google-earth-engine%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

            ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế

            ⃀⃉⃄⃅⃍,⃂₼₡₰⃉₡₿₢⃉₣⃄₯⃊₮₼₹₱₦₷⃄₪₼₶₳₫⃍₽ ₫₪₦⃆₠₥⃁₸₴₷⃊₹⃅⃈₰⃁₫ ⃎⃍₩₣₷ ₻₮⃊⃀⃄⃉₯,⃏⃊,₦⃅₪,₼⃀₾₧₷₾ ₻ ₸₡ ₾,₭⃈₴⃋,€⃁,₩ ₺⃌⃍⃁₱⃋⃋₨⃊⃁⃃₼,⃎,₱⃍₲₶₡ ⃍⃅₶₨₭,⃉₭₾₡₻⃀ ₼₹⃅₹,₻₭ ⃌