Snub 24-cell honeycomb




















Snub 24-cell honeycomb
(No image)
Type
Uniform 4-honeycomb
Schläfli symbolss3,4,3,3
sr3,3,4,3
2sr4,3,3,4
2sr4,3,31,1
s31,1,1,1
Coxeter diagrams

CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel split1.pngCDel nodes hh.png = CDel node h.pngCDel 3.pngCDel node h.pngCDel splitsplit1.pngCDel branch3 hh.pngCDel node h.png


4-face type
snub 24-cell Ortho solid 969-uniform polychoron 343-snub.png
16-cell Schlegel wireframe 16-cell.png
5-cell Schlegel wireframe 5-cell.png
Cell type
3,3 Tetrahedron.png
3,5 Icosahedron.png
Face type
triangle 3
Vertex figure
Snub 24-cell honeycomb verf.png
Irregular decachoron
Symmetries[3+,4,3,3]
[3,4,(3,3)+]
[4,(3,3)+,4]
[4,(3,31,1)+]
[31,1,1,1]+
Properties
Vertex transitive, nonWythoffian

In four-dimensional Euclidean geometry, the snub 24-cell honeycomb, or snub icositetrachoric honeycomb is a uniform space-filling tessellation (or honeycomb) by snub 24-cells, 16-cells, and 5-cells. It was discovered by Thorold Gosset with his 1900 paper of semiregular polytopes. It is not semiregular by Gosset's definition of regular facets, but all of its cells (ridges) are regular, either tetrahedra or icosahedra.


It can be seen as an alternation of a truncated 24-cell honeycomb, and can be represented by Schläfli symbol s3,4,3,3, s31,1,1,1, and 3 other snub constructions.


It is defined by an irregular decachoron vertex figure (10-celled 4-polytope), faceted by four snub 24-cells, one 16-cell, and five 5-cells. The vertex figure can be seen topologically as a modified tetrahedral prism, where one of the tetrahedra is subdivided at mid-edges into a central octahedron and four corner tetrahedra. Then the four side-facets of the prism, the triangular prisms become tridiminished icosahedra.



Symmetry constructions


There are five different symmetry constructions of this tessellation. Each symmetry can be represented by different arrangements of colored snub 24-cell, 16-cell, and 5-cell facets. In all cases, four snub 24-cells, five 5-cells, and one 16-cell meet at each vertex, but the vertex figures have different symmetry generators.






























Symmetry

Coxeter
Schläfli

Facets (on vertex figure)

Snub 24-cell
(4)

16-cell
(1)

5-cell
(5)
[3+,4,3,3]

CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
s3,4,3,3

4: CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,4,(3,3)+]

CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
sr3,3,4,3

3: CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
1: CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.png
[[4,(3,3)+,4]]

CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
2sr4,3,3,4

2,2: CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
[(31,1,3)+,4]

CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
2sr4,3,31,1

1,1: CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
2: CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.png

CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
[31,1,1,1]+
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
s31,1,1,1

1,1,1,1:
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.png

CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.png


See also


Regular and uniform honeycombs in 4-space:


  • Tesseractic honeycomb

  • 16-cell honeycomb

  • 24-cell honeycomb

  • Truncated 24-cell honeycomb

  • 5-cell honeycomb

  • Truncated 5-cell honeycomb

  • Omnitruncated 5-cell honeycomb


References



  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900


  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, .mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
    ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs


  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
    ISBN 978-0-471-01003-6
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]

  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 133


  • Klitzing, Richard. "4D Euclidean tesselations"., o4s3s3s4o, s3s3s *b3s4o, s3s3s *b3s *b3s, o3o3o4s3s, s3s3s4o3o - sadit - O133









































































Fundamental convex regular and uniform honeycombs in dimensions 2-9

Space

Family

A~n−1displaystyle tilde A_n-1tilde A_n-1

C~n−1displaystyle tilde C_n-1tilde C_n-1

B~n−1displaystyle tilde B_n-1tilde B_n-1

D~n−1displaystyle tilde D_n-1tilde D_n-1

G~2displaystyle tilde G_2tilde G_2 / F~4displaystyle tilde F_4tilde F_4 / E~n−1displaystyle tilde E_n-1tilde E_n-1
E2
Uniform tiling

3[3]

δ3

3

3

Hexagonal
E3
Uniform convex honeycomb

3[4]

δ4

4

4

E4
Uniform 4-honeycomb

3[5]

δ5

5

5

24-cell honeycomb
E5
Uniform 5-honeycomb

3[6]

δ6

6

6

E6
Uniform 6-honeycomb

3[7]

δ7

7

7

222
E7
Uniform 7-honeycomb

3[8]

δ8

8

8

133 • 331
E8
Uniform 8-honeycomb

3[9]

δ9

9

9

152 • 251 • 521
E9
Uniform 9-honeycomb
3[10]
δ10

10

10

En-1Uniform (n-1)-honeycomb

3[n]

δn

n

n

1k2 • 2k1 • k21

Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

Crossroads (UK TV series)

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế