16-cell honeycomb


























16-cell honeycomb

Demitesseractic tetra hc.png
Perspective projection: the first layer of adjacent 16-cell facets.
Type
Regular 4-honeycomb
Uniform 4-honeycomb
Family
Alternated hypercube honeycomb
Schläfli symbol3,3,4,3
Coxeter diagrams
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel label2.pngCDel branch hh.pngCDel 4a4b.pngCDel nodes.pngCDel split2.pngCDel node.png
4-face type
3,3,4 Schlegel wireframe 16-cell.png
Cell type
3,3 Tetrahedron.png
Face type
3
Edge figure
cube
Vertex figure
24-cell t0 F4.svg
24-cell
Coxeter group
F~4displaystyle tilde F_4tilde F_4 = [3,3,4,3]
Dual
3,4,3,3
Properties
vertex-transitive, edge-transitive, face-transitive, cell-transitive, 4-face-transitive

In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations (or honeycombs) in Euclidean 4-space. The other two are its dual the 24-cell honeycomb, and the tesseractic honeycomb. This honeycomb is constructed from 16-cell facets, three around every face. It has a 24-cell vertex figure.


This vertex arrangement or lattice is called the B4, D4, or F4 lattice.[1][2]




Contents





  • 1 Alternate names


  • 2 Coordinates


  • 3 D4 lattice


  • 4 Symmetry constructions


  • 5 Related honeycombs


  • 6 See also


  • 7 Notes


  • 8 References




Alternate names


  • Hexadecachoric tetracomb/honeycomb

  • Demitesseractic tetracomb/honeycomb


Coordinates


As a regular honeycomb, 3,3,4,3, it has a 2-dimensional analogue, 3,6, and as an alternated form (the demitesseractic honeycomb, h4,3,3,4) it is related to the alternated cubic honeycomb.


Vertices can be placed at all integer coordinates (i,j,k,l), such that the sum of the coordinates is even.



D4 lattice


The vertex arrangement of the 16-cell honeycomb is called the D4 lattice or F4 lattice.[2] The vertices of this lattice are the centers of the 3-spheres in the densest known packing of equal spheres in 4-space;[3] its kissing number is 24, which is also the same as the kissing number in R4, as proved by Oleg Musin in 2003.[4][5]


The D+
4
lattice (also called D2
4
) can be constructed by the union of two D4 lattices, and is identical to the tesseractic honeycomb:[6]



CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes 01rd.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

This packing is only a lattice for even dimensions. The kissing number is 23 = 8, (2n – 1 for n < 8, 240 for n = 8, and 2n(n – 1) for n > 8).[7]


The D*
4
lattice (also called D4
4
and C2
4
) can be constructed by the union of all four D4 lattices, but it is identical to the D4 lattice: It is also the 4-dimensional body centered cubic, the union of two 4-cube honeycombs in dual positions.[8]



CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes 01rd.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes 01ld.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel nodes 10r.pngCDel 4a4b.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel nodes 01r.pngCDel 4a4b.pngCDel nodes.pngCDel split2.pngCDel node.png.

The kissing number of the D*
4
lattice (and D4 lattice) is 24[9] and its Voronoi tessellation is a 24-cell honeycomb, CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 4a4b.pngCDel nodes.png, containing all rectified 16-cells (24-cell) Voronoi cells, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png or CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png.[10]



Symmetry constructions


There are three different symmetry constructions of this tessellation. Each symmetry can be represented by different arrangements of colored 16-cell facets.




























Coxeter group

Schläfli symbol

Coxeter diagram

Vertex figure
Symmetry

Facets/verf

F~4displaystyle tilde F_4tilde F_4 = [3,3,4,3]
3,3,4,3CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
[3,4,3], order 1152
24: 16-cell

B~4displaystyle tilde B_4tilde B_4 = [31,1,3,4]
= h4,3,3,4
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[3,3,4], order 384
16+8: 16-cell

D~4displaystyle tilde D_4tilde D_4 = [31,1,1,1]
3,31,1,1
= h4,3,31,1

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
[31,1,1], order 192
8+8+8: 16-cell
2×½C~4displaystyle tilde C_4tilde C_4 = [[(4,3,3,4,2+)]]ht0,44,3,3,4CDel label2.pngCDel branch hh.pngCDel 4a4b.pngCDel nodes.pngCDel split2.pngCDel node.png
8+4+4: 4-demicube
8: 16-cell


Related honeycombs


It is related to the regular hyperbolic 5-space 5-orthoplex honeycomb, 3,3,3,4,3, with 5-orthoplex facets, the regular 4-polytope 24-cell, 3,4,3 with octahedral (3-orthoplex) cell, and cube 4,3, with (2-orthoplex) square faces.


This honeycomb is one of 20 uniform honeycombs constructed by the D~5displaystyle tilde D_5tilde D_5 Coxeter group, all but 3 repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 20 permutations are listed with its highest extended symmetry relation:



























See also


Regular and uniform honeycombs in 4-space:


  • Tesseractic honeycomb

  • 24-cell honeycomb

  • Truncated 24-cell honeycomb

  • Snub 24-cell honeycomb

  • 5-cell honeycomb

  • Truncated 5-cell honeycomb

  • Omnitruncated 5-cell honeycomb


Notes




  1. ^ http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/F4.html


  2. ^ ab http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D4.html


  3. ^ Conway and Sloane, Sphere packings, lattices, and groups, 1.4 n-dimensional packings, p.9


  4. ^ Conway and Sloane, Sphere packings, lattices, and groups, 1.5 Sphere packing problem summary of results. , p.12


  5. ^ O. R. Musin (2003). "The problem of the twenty-five spheres". Russ. Math. Surv. 58: 794–795. Bibcode:2003RuMaS..58..794M. doi:10.1070/RM2003v058n04ABEH000651..mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  6. ^ Conway and Sloane, Sphere packings, lattices, and groups, 7.3 The packing D3+, p.119


  7. ^ Conway and Sloane, Sphere packings, lattices, and groups, p. 119


  8. ^ Conway and Sloane, Sphere packings, lattices, and groups, 7.4 The dual lattice D3*, p.120


  9. ^ Conway and Sloane, Sphere packings, lattices, and groups, p. 120


  10. ^ Conway and Sloane, Sphere packings, lattices, and groups, p. 466




References



  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition,
    ISBN 0-486-61480-8
    • pp. 154–156: Partial truncation or alternation, represented by h prefix: h4,4 = 4,4; h4,3,4 = 31,1,4, h4,3,3,4 = 3,3,4,3, ...


  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
    ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]

  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)


  • Klitzing, Richard. "4D Euclidean tesselations". x3o3o4o3o - hext - O104


  • Conway JH, Sloane NJH (1998). Sphere Packings, Lattices and Groups (3rd ed.). ISBN 0-387-98585-9.









































































Fundamental convex regular and uniform honeycombs in dimensions 2-9

Space

Family

A~n−1displaystyle tilde A_n-1tilde A_n-1

C~n−1displaystyle tilde C_n-1tilde C_n-1

B~n−1displaystyle tilde B_n-1tilde B_n-1

D~n−1displaystyle tilde D_n-1tilde D_n-1

G~2displaystyle tilde G_2tilde G_2 / F~4displaystyle tilde F_4tilde F_4 / E~n−1displaystyle tilde E_n-1tilde E_n-1
E2
Uniform tiling

3[3]

δ3

3

3

Hexagonal
E3
Uniform convex honeycomb

3[4]

δ4

4

4

E4
Uniform 4-honeycomb

3[5]

δ5

5

5

24-cell honeycomb
E5
Uniform 5-honeycomb

3[6]

δ6

6

6

E6
Uniform 6-honeycomb

3[7]

δ7

7

7

222
E7
Uniform 7-honeycomb

3[8]

δ8

8

8

133 • 331
E8
Uniform 8-honeycomb

3[9]

δ9

9

9

152 • 251 • 521
E9
Uniform 9-honeycomb
3[10]
δ10

10

10

En-1Uniform (n-1)-honeycomb

3[n]

δn

n

n

1k2 • 2k1 • k21

Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

Edmonton

Crossroads (UK TV series)