Rotation period
In astronomy, the rotation period of a celestial object is the time that it takes to complete one revolution around its axis of rotation relative to the background stars. It differs from the planet's solar day, which includes an extra fractional rotation needed to accommodate the portion of the planet's orbital period during one day.
Contents
1 Measuring rotation
2 Earth
3 Rotation period of selected objects
4 See also
5 References
6 External links
Measuring rotation
For solid objects, such as rocky planets and asteroids, the rotation period is a single value. For gaseous/fluid bodies, such as stars and gas giants, the period of rotation varies from the equator to the poles due to a phenomenon called differential rotation. Typically, the stated rotation period for a gas giant (Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as determined from the rotation of the planet's magnetic field. For objects that are not spherically symmetrical, the rotation period is, in general, not fixed, even in the absence of gravitational or tidal forces. This is because, although the rotation axis is fixed in space (by the conservation of angular momentum), it is not necessarily fixed in the body of the object itself.[citation needed] As a result of this, the moment of inertia of the object around the rotation axis can vary, and hence the rate of rotation can vary (because the product of the moment of inertia and the rate of rotation is equal to the angular momentum, which is fixed). Hyperion, a satellite of Saturn, exhibits this behaviour, and its rotation period is described as chaotic.
Earth
This article may contain an excessive amount of intricate detail that may interest only a particular audience.May 2015) (Learn how and when to remove this template message) ( |
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (November 2018) (Learn how and when to remove this template message) |
This section may require cleanup to meet Wikipedia's quality standards. The specific problem is: This section is too technical.November 2018) (Learn how and when to remove this template message) ( |
Earth's rotation period relative to the Sun (its mean solar day) consists of 86,400 seconds of mean solar time, by definition. Each of these seconds is slightly longer than an SI second because Earth's solar day is now slightly longer than it was during the 19th century, due to tidal deceleration. The mean solar second between 1750 and 1892 was chosen in 1895 by Simon Newcomb as the independent unit of time in his Tables of the Sun. These tables were used to calculate the world's ephemerides between 1900 and 1983, so this second became known as the ephemeris second. The SI second was made equal to the ephemeris second in 1967.[1]
Earth's rotation period relative to the fixed stars, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86164.098 903 691 seconds of mean solar time (UT1) (23h 56m 4.098 903 691s).[2][3] Earth's rotation period relative to the precessing or moving mean vernal equinox, its sidereal day, is 86164.090 530 832 88 seconds of mean solar time (UT1) (23h 56m 4.090 530 832 88s).[2] Thus the sidereal day is shorter than the stellar day by about 8.4 ms.[4] The length of the mean solar day in SI seconds is available from the IERS for the periods 1623–2005[5] and 1962–2005.[6]
Recently (1999–2005) the average annual length of the mean solar day in excess of 86400 SI seconds has varied between 0.3 ms and 1 ms, which must be added to both the stellar and sidereal days given in mean solar time above to obtain their lengths in SI seconds.
Rotation period of selected objects
Celestial objects | Rotation period | |
---|---|---|
Sun | 25.379995 days (Carrington rotation) 35 days (high latitude) | 25ᵈ 9ʰ 7ᵐ 11.6ˢ 35ᵈ |
Mercury | 58.6462 days[7] | 58ᵈ 15ʰ 30ᵐ 30ˢ |
Venus | -243.0187 days[7][8] | −243ᵈ 0ʰ 26ᵐ |
Earth | 0.99726968 days[7][9] | 0ᵈ 23ʰ 56ᵐ 4.0910ˢ |
Moon | 27.321661 days[10] (synchronous toward Earth) | 27ᵈ 7ʰ 43ᵐ 11.5ˢ |
Mars | 1.02595675 days[7] | 1ᵈ 0ʰ 37ᵐ 22.663ˢ |
Ceres | 0.37809 days[11] | 0ᵈ 9ʰ 4ᵐ 27.0ˢ |
Jupiter | 0.4135344 days (deep interior)[12] 0.41007 days (equatorial) 0.41369942 days (high latitude) | 0ᵈ 9ʰ 55ᵐ 29.37s[7] 0ᵈ 9ʰ 50ᵐ 30ˢ[7] 0ᵈ 9ʰ 55ᵐ 43.63ˢ[7] |
Saturn | 0.44403 days (deep interior)[12] 0.426 days (equatorial) 0.443 days (high latitude) | 0ᵈ 10ʰ 39ᵐ 24ˢ[7] 0ᵈ 10ʰ 14ᵐ[7] 0ᵈ 10ʰ 38ᵐ[7] |
Uranus | −0.71833 days[7][8][12] | −0ᵈ 17ʰ 14ᵐ 24ˢ |
Neptune | 0.67125 days[7][12] | 0ᵈ 16ʰ 6ᵐ 36ˢ |
Pluto | −6.38718 days[7][8] (synchronous with Charon) | –6ᵈ 9ʰ 17ᵐ 32ˢ |
Haumea | 0.163145 days[13] | 0ᵈ 3ʰ 54ᵐ 56ˢ |
See also
- Apparent retrograde motion
- List of slow rotators (minor planets)
- List of fast rotators (minor planets)
- Orbital period
- Poles of astronomical bodies
- Retrograde motion
- Rotational speed
- Synodic day
References
^ Leap seconds by USNO
^ ab IERS EOP Useful constants
^ Aoki, the ultimate source of these figures, uses the term "seconds of UT1" instead of "seconds of mean solar time". Aoki, et al., "The new definition of Universal Time", Astronomy and Astrophysics 105 (1982) 359–361.
^ Explanatory Supplement to the Astronomical Almanac, ed. P. Kenneth Seidelmann, Mill Valley, Cal., University Science Books, 1992, p.48, .mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
ISBN 0-935702-68-7.
^ IERS Excess of the duration of the day to 86400s … since 1623 Archived 2008-10-03 at the Wayback Machine. Graph at end.
^ IERS Variations in the duration of the day 1962–2005
^ abcdefghijklm Clabon Walter Allen & Arthur N. Cox (2000). Allen's Astrophysical Quantities. Springer. p. 296. ISBN 0-387-98746-0.
^ abc This rotation is negative because the pole which points north of the ecliptic rotates in the opposite direction to most other planets.
^ Reference adds about 1 ms to Earth's stellar day given in mean solar time to account for the length of Earth's mean solar day in excess of 86400 SI seconds.
^ Clabon Walter Allen & Arthur N. Cox (2000). Allen's Astrophysical Quantities. Springer. p. 308. ISBN 0-387-98746-0.
^ Chamberlain, Matthew A.; Sykes, Mark V.; Esquerdo, Gilbert A. (2007). "Ceres lightcurve analysis – Period determination". Icarus. 188 (2): 451&ndash, 456. Bibcode:2007Icar..188..451C. doi:10.1016/j.icarus.2006.11.025.
^ abcd Rotation period of the deep interior is that of the planet's magnetic field.
^
Pedro Lacerda; David Jewitt & Nuno Peixinho (2008-04-02). "High-Precision Photometry of Extreme KBO 2003 EL61". The Astronomical Journal. 135 (5): 1749–1756. arXiv:0801.4124. Bibcode:2008AJ....135.1749L. doi:10.1088/0004-6256/135/5/1749. Retrieved 2008-09-22.
External links
Murray, Carl D. & Stanley F. Dermott (1999). Solar System Dynamics. Cambridge UP. p. 531. ISBN 0-521-57295-9. Rotation periods of Mercury and Earth are wrong.