C-type asteroid





253 Mathilde, a C-type asteroid


C-type (carbonaceous) asteroids are the most common variety, forming around 75% of known asteroids.[1] They are distinguished by a very low albedo because their composition includes a large amount of carbon, in addition to rocks and minerals. They occur most frequently at the outer edge of the asteroid belt, 3.5 astronomical units (AU) from the Sun, where 80% of the asteroids are of this type, whereas only 40% of asteroids at 2 AU from the Sun are C-type.[2] The proportion of C-types may actually be greater than this, because C-types are much darker (and therefore less detectable) than most other asteroid types except for D-types and others that are mostly at the extreme outer edge of the asteroid belt.




Contents





  • 1 Characteristics


  • 2 C-group asteroids

    • 2.1 C-group (Tholen)


    • 2.2 C-group (SMASS)



  • 3 See also


  • 4 References




Characteristics


Asteroids of this class have spectra very similar to those of carbonaceous chondrite meteorites (types CI and CM). The latter are very close in chemical composition to the Sun and the primitive solar nebula, except for the absence of hydrogen, helium and other volatiles. Hydrated (water-containing) minerals are present.[3]


C-type asteroids are extremely dark, with albedos typically in the 0.03 to 0.10 range. Consequently, whereas a number of S-type asteroids can normally be viewed with binoculars at opposition, even the largest C-type asteroids require a small telescope. The potentially brightest C-type asteroid is 324 Bamberga, but that object's very high eccentricity means it rarely reaches its maximum magnitude.


Their spectra contain moderately strong ultraviolet absorption at wavelengths below about 0.4 μm to 0.5 μm, while at longer wavelengths they are largely featureless but slightly reddish. The so-called "water" absorption feature of around 3 μm, which can be an indication of water content in minerals, is also present.


The largest unequivocally C-type asteroid is 10 Hygiea, although the SMASS classification places the largest asteroid, 1 Ceres, here as well, because that scheme lacks a G-type.



C-group asteroids




C-group (Tholen)


In the Tholen classification, the C-type is grouped along with three less numerous types into a wider C-group of carbonaceous asteroids which contains:[citation needed]


  • B-type

  • C-type

  • F-type

  • G-type


C-group (SMASS)


In the SMASS classification, the wider C-group contains the types:[citation needed]


  • B-type corresponding to the Tholen B and F-types

  • a core C-type for asteroids having the most "typical" spectra in the group

  • Cg and Cgh types corresponding to the Tholen G-type

  • Ch type with an absorption feature around 0.7μm

  • Cb type corresponding to transition objects between the SMASS C and B types


See also


  • Asteroid spectral types


References




  1. ^ Gradie et al. pp. 316-335 in Asteroids II. edited by Richard P. Binzel, Tom Gehrels, and Mildred Shapley Matthews, Eds. University of Arizona Press, Tucson, 1989, .mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
    ISBN 0-8165-1123-3



  2. ^ "Asteroids: Structure and composition of asteroids". ESA.


  3. ^ Norton, O. Richard (2002). The Cambridge Encyclopedia of Meteorites. Cambridge: Cambridge University Press. pp. 121–124. ISBN 0-521-62143-7.



  • S. J. Bus and R. P. Binzel Phase II of the Small Main-belt Asteroid Spectroscopy Survey: A feature-based taxonomy, Icarus, Vol. 158, pp. 146 (2002).








Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế

⃀⃉⃄⃅⃍,⃂₼₡₰⃉₡₿₢⃉₣⃄₯⃊₮₼₹₱₦₷⃄₪₼₶₳₫⃍₽ ₫₪₦⃆₠₥⃁₸₴₷⃊₹⃅⃈₰⃁₫ ⃎⃍₩₣₷ ₻₮⃊⃀⃄⃉₯,⃏⃊,₦⃅₪,₼⃀₾₧₷₾ ₻ ₸₡ ₾,₭⃈₴⃋,€⃁,₩ ₺⃌⃍⃁₱⃋⃋₨⃊⃁⃃₼,⃎,₱⃍₲₶₡ ⃍⃅₶₨₭,⃉₭₾₡₻⃀ ₼₹⃅₹,₻₭ ⃌