Bound surface limits to a function

Bound surface limits to a function



Consider the following plot of two surfaces


Plot3D[Sin[x y], x^3 + y, x, -1, 1, y, -1, 1, PlotRange -> x, -1, 1, y, -1, 1, z, -1, 1, Mesh -> None]



plot



How can I produce a plot where I limit the the surface plot of $sin(x y)$, to be shown only when its values are above $x^3+y$, or any other given function.




2 Answers
2


Plot3D[ConditionalExpression[Sin[x y], Sin[x y] > x^3 + y],
x, -1, 1, y, -1, 1, PlotRange -> -1, 1, -1, 1, -1, 1, Mesh -> None]



enter image description here



To show both functions


Plot3D[ConditionalExpression[Sin[x y], Sin[x y] > x^3 + y], x^3 + y ,
x, -1, 1, y, -1, 1, PlotRange -> -1, 1, -1, 1, -1, 1,
Mesh -> None, BaseStyle -> Opacity[.7]]



enter image description here


Plot3D[Sin[x y], x, -1, 1, y, -1, 1,
 PlotRange -> -1, 1, -1, 1, -1, 1,
MeshFunctions -> Sin[# #2] - #^3 - #2 &, Mesh -> 0,
MeshShading -> None, Automatic, BoundaryStyle -> None]



enter image description here



You can utilize the option RegionFunction for that:


RegionFunction


Plot3D[Sin[x y], x^3 + y, x, -1, 1, y, -1, 1,
Mesh -> None,
RegionFunction -> (x, y, z [Function] Sin[x y] > (x^3 + y))
]



enter image description here





Equivalently: reg = BoundaryDiscretizeRegion[ImplicitRegion[Sin[x y] > (x^3 + y), x, -1, 1, y, -1, 1]]; Plot3D[Sin[x y], x, y ∈ reg]
– J. M. is computer-less
Oct 6 at 9:59


reg = BoundaryDiscretizeRegion[ImplicitRegion[Sin[x y] > (x^3 + y), x, -1, 1, y, -1, 1]]; Plot3D[Sin[x y], x, y ∈ reg]



Required, but never shown



Required, but never shown






By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.