how to change dd-mm-yyyy date format to yyyy-dd-mm in pandas

how to change dd-mm-yyyy date format to yyyy-dd-mm in pandas



How to change dd-mm-yyyy date format to yyyy-dd-mm in pandas. I have a datefield which is already in dd-mm-yyyy format but when I try


df[('date')] = pd.to_datetime(df[('date')]).dt.strftime('%Y-%m-%d')



it gives output a yyyy-dd-mm




3 Answers
3



I believe this is what you needed.


import pandas as pd
df = pd.read_csv("dates.csv")

df

id date
0 1 25/06/2018
1 2 14-11-2005
2 3 03/10/2010
3 4 13-08-2008
4 5 05-05-2005



Here no need to specify the format as you have tried.


df['date'] =pd.to_datetime(df['date'])
df

id date
0 1 2018-06-25
1 2 2005-11-14
2 3 2010-03-10
3 4 2008-08-13
4 5 2005-05-05





Hi,even if I don't specify it gives me result in yyyy-mm-dd... Does it matter if the earlier date format is dd/mm/yyyy delimiter is (/) rather than (-) ??
– Rahul
Aug 30 at 6:03






Can you please specify in which format you wanted it to be? Ex:- yyyy-mm-dd (or) yyyy/mm/dd (or) dd-mm-yyyy (or) dd/mm/yyyy
– msr_003
Aug 30 at 6:20


yyyy-mm-dd


yyyy/mm/dd


dd-mm-yyyy


dd/mm/yyyy





My date format is dd/mm/yyyy but i want it in yyyy-mm-dd format.. But when i do pd.datetime it gives me result as yyyy-dd-mm
– Rahul
Aug 30 at 6:32





I've tested with dd/mm/yyyy format and the same function is giving me in yyyy-mm-dd format, not in yyyy-dd-mm format.
– msr_003
Aug 30 at 6:37


dd/mm/yyyy


yyyy-mm-dd


yyyy-dd-mm



Pandas datetime series data do not have an inherent string format.


datetime



datetime values are stored internally as integers. For more details, see this answer. String representations are just that, representations. For example, when you use the print command, a specific string representation is used so that data is displayed in a human-readable way.


datetime


print



For most purposes, you should not worry about the representation. If you need a format different to the default representation, i.e. "YYYY-MM-DD", you can use pd.Series.dt.strftime and specify a string format. For this Python's strftime directives is a useful resource.


pd.Series.dt.strftime


strftime



Use this:


import pandas as pd

df['date'] = pd.to_datetime(df['date'],format='%d-%m-%Y').dt.strftime('%Y-%m-%d')#specify input format '%d-%m-%Y' and output format '%Y-%m-%d' or change output as desired i.e. %d/%m/%Y to give dd/mm/yyyy



Required, but never shown



Required, but never shown






By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.

Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

Crossroads (UK TV series)

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế