2-Torsion in Jacobians of Curves Over Finite Fields
2-Torsion in Jacobians of Curves Over Finite Fields
Let $C$ be a (smooth, projective) curve over a finite field $mathbbF_q$, and let $J_C(mathbbF_q)$ denote its Jacobian. Suppose the genus $g$ of $C$ is at least $1$.
Question 1: Are there curves $C$ for which $J_C(mathbbF_q)$ is isomorphic, as a group, to $(mathbbZ/2mathbbZ)^k$ for some $k$? Can one characterize all such curves?
Question 2: What is known about upper bounds of the size of the $2$-torsion of $J_C(mathbbF_q)$ compared to the size of $J_C(mathbbF_q)$ itself? Is it necessarily true, say, that the 2-torsion is negligible if some parameter ($q$ or $g$) is large enough?
1 Answer
1
I think $y^2=x^9-x$ over $mathbbF_3$ has $J_C(mathbbF_3)$ isomorphic to $(mathbbZ/2)^6$ but please check.
The $2$-torsion in $J_C$ over the algebraic closure is $(mathbbZ/2)^2g$ (or smaller in characteristic two). On the other hand, $#J_C(mathbbF_q) ge (sqrtq -1)^2g$, so for $q > 9$, the latter is bigger than the former (and usually much bigger). So the things you want can only exist for small $q$. I don't know a classification.
Required, but never shown
Required, but never shown
By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.
Thanks for making precise what immediately sprang to my mind, but only in a foggy, ill-formed way.
– Lubin
Aug 30 at 22:43