Cox process

Multi tool use
Multi tool use
The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP

In probability theory, a Cox process, also known as a doubly stochastic Poisson process is a point process which is a generalization of a Poisson process where the time-dependent intensity is itself a stochastic process. The process is named after the statistician David Cox, who first published the model in 1955.[1]


Cox processes are used to generate simulations of spike trains (the sequence of action potentials generated by a neuron),[2] and also in financial mathematics where they produce a "useful framework for modeling prices of financial instruments in which credit risk is a significant factor."[3]




Contents





  • 1 Definition


  • 2 Laplace transform


  • 3 See also


  • 4 References




Definition


Let ξdisplaystyle xi xi be a random measure.


A random measure ηdisplaystyle eta eta is called a Cox process directed by ξdisplaystyle xi xi , if L(η∣ξ=μ)displaystyle mathcal L(eta mid xi =mu )displaystyle mathcal L(eta mid xi =mu ) is a Poisson process with intensity measure μdisplaystyle mu mu .


Here, L(η∣ξ=μ)displaystyle mathcal L(eta mid xi =mu )displaystyle mathcal L(eta mid xi =mu ) is the conditional distribution of ηdisplaystyle eta eta , given ξ=μdisplaystyle xi =mu displaystyle xi =mu .



Laplace transform


If ξdisplaystyle xi xi is a Cox process directed by ηdisplaystyle eta eta , then ξdisplaystyle xi xi has got the Laplace transform


Lξ(f)=exp⁡(−∫1−exp⁡(−f(x))η(dx))displaystyle mathcal L_xi (f)=exp left(-int 1-exp(-f(x));eta (mathrm d x)right)displaystyle mathcal L_xi (f)=exp left(-int 1-exp(-f(x));eta (mathrm d x)right)

for any positive, measurable function fdisplaystyle ff.



See also


  • Poisson hidden Markov model

  • Doubly stochastic model


  • Inhomogeneous Poisson process, where λ(t) is restricted to a deterministic function

  • Ross's conjecture

  • Gaussian process

  • Mixed Poisson process


References


Notes


  1. ^ Cox, D. R. (1955). "Some Statistical Methods Connected with Series of Events". Journal of the Royal Statistical Society. 17 (2): 129–164. doi:10.2307/2983950. 


  2. ^ Krumin, M.; Shoham, S. (2009). "Generation of Spike Trains with Controlled Auto- and Cross-Correlation Functions". Neural Computation. 21 (6): 1642–1664. doi:10.1162/neco.2009.08-08-847. PMID 19191596. 


  3. ^ Lando, David (1998). "On cox processes and credit risky securities". Review of Derivatives Research. 2 (2–3): 99–120. doi:10.1007/BF01531332. 



Bibliography
  • Cox, D. R. and Isham, V. Point Processes, London: Chapman & Hall, 1980 ISBN 0-412-21910-7

  • Donald L. Snyder and Michael I. Miller Random Point Processes in Time and Space Springer-Verlag, 1991 ISBN 0-387-97577-2 (New York) ISBN 3-540-97577-2 (Berlin)






2J,zdsx8owfea0h9lLukVMPKI5Agn UlI
SIVq JaKbxB8FnLti,J,jxrUZRhWcLpw8o,WBxl5wD,i zRH2amr4Ksx3CHCPmX8iDqay

Popular posts from this blog

Old paper Canadian currency

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế