ValueError while predicting from tf saved_model

ValueError while predicting from tf saved_model



I have saved a DNNestimator, and now I am trying to use that model to predict on some data.



Model training:


feature_columns = [tf.contrib.layers.real_valued_column("x", dimension=500)]

classifier = tf.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[500],
optimizer=tf.train.AdamOptimizer(1e-4),
n_classes=18,
dropout=0,
model_dir=None)

train_input_fn = tf.estimator.inputs.numpy_input_fn(
x='x': train_vec.values,
y=train.code.astype(np.int32),
num_epochs=None,
batch_size=50,
shuffle=True)

classifier.train(input_fn=train_input_fn, steps=1000)

feature_spec = 'x':tf.FixedLenFeature(shape= [500],dtype=np.float32)
serving_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn( feature_spec)
export_path = "path/to/export"
classifier.export_savedmodel(export_path,serving_fn)



I am trying to predict here:


a=np.expand_dims(test_vec.iloc[0].values,axis=0)
predict_fn = tf.contrib.predictor.from_saved_model(export_path_folder)
predictions = predict_fn("inputs":a)



Train_vec and test_vec are dataframes with 500 columns (features). I get the following error while predicting:


ValueError: Cannot feed value of shape (1, 500) for Tensor u'input_example_tensor:0', which has shape '(?,)'



Following is my saved_model_cli:


The given SavedModel SignatureDef contains the following input(s):
inputs['inputs'] tensor_info:
dtype: DT_STRING
shape: (-1)
name: input_example_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['classes'] tensor_info:
dtype: DT_STRING
shape: (-1, 18)
name: dnn/head/Tile:0
outputs['scores'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 18)
name: dnn/head/predictions/probabilities:0
Method name is: tensorflow/serving/classify



Very new to tensorflow, any help or direction would be valuable.
Thanks!




1 Answer
1



Work around:



Could not solve the above error, but a DNNClassifier "warm start" worked.


classifier = tf.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[500],
optimizer=tf.train.AdamOptimizer(1e-4),
n_classes=18,
dropout=0,
warm_start_from=export_path_folder)



And then use classifier.predict



Thanks for contributing an answer to Stack Overflow!



But avoid



To learn more, see our tips on writing great answers.



Required, but never shown



Required, but never shown




By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.

Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế

⃀⃉⃄⃅⃍,⃂₼₡₰⃉₡₿₢⃉₣⃄₯⃊₮₼₹₱₦₷⃄₪₼₶₳₫⃍₽ ₫₪₦⃆₠₥⃁₸₴₷⃊₹⃅⃈₰⃁₫ ⃎⃍₩₣₷ ₻₮⃊⃀⃄⃉₯,⃏⃊,₦⃅₪,₼⃀₾₧₷₾ ₻ ₸₡ ₾,₭⃈₴⃋,€⃁,₩ ₺⃌⃍⃁₱⃋⃋₨⃊⃁⃃₼,⃎,₱⃍₲₶₡ ⃍⃅₶₨₭,⃉₭₾₡₻⃀ ₼₹⃅₹,₻₭ ⃌