Isotopes of xenon

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP







Main isotopes of xenon .mw-parser-output .noboldfont-weight:normal
(54Xe)


























































Iso­tope

Decay


abun­dance

half-life
(t1/2)

mode

pro­duct

124Xe
0.095%

stable

125Xe

syn
16.9 h

ε

125I

126Xe
0.089%
stable

127Xe
syn
36.345 d
ε

127I

128Xe
1.910%
stable

129Xe
26.401%
stable

130Xe
4.071%
stable

131Xe
21.232%
stable

132Xe
26.909%
stable

133Xe
syn
5.247 d

β

133Cs

134Xe
10.436%
stable

135Xe
syn
9.14 h
β
135Cs

136Xe
8.857%
2.165×1021 y[1]
ββ

136Ba

Standard atomic weight
Ar, standard(Xe)
  • 131.293(6)[2]

Naturally occurring xenon (54Xe) is made of eight stable isotopes and one very long-lived isotope. (124Xe, 126Xe, and 134Xe are predicted to undergo double beta decay,[3] but this has never been observed in these isotopes, so they are considered to be stable.)[4][5]
Xenon has the second-highest number of stable isotopes. Only tin, with 10 stable isotopes, has more.[6] Beyond these stable forms, 32 unstable isotopes and various isomers have been studied, the longest-lived of which is 136Xe, which undergoes double beta decay with a half-life of 2.165 ± 0.016(stat) ± 0.059(sys) ×1021 years[1] with the next longest lived being 127Xe with a half-life of 36.345 days. All other isotopes have half-lives less than 12 days, most less than 20 hours. The shortest-lived isotope, 108Xe,[7] has a half-life of 58 µs, and is the heaviest known nuclide with equal numbers of protons and neutrons. Of known isomers, the longest-lived is 131mXe with a half-life of 11.934 days. 129Xe is produced by beta decay of 129I (half-life: 16 million years); 131mXe, 133Xe, 133mXe, and 135Xe are some of the fission products of both 235U and 239Pu, so are used as indicators of nuclear explosions.


The artificial isotope 135Xe is of considerable significance in the operation of nuclear fission reactors. 135Xe has a huge cross section for thermal neutrons, 2.65×106barns, so it acts as a neutron absorber or "poison" that can slow or stop the chain reaction after a period of operation. This was discovered in the earliest nuclear reactors built by the American Manhattan Project for plutonium production. The designers had made provisions in the design to increase the reactor's reactivity (the number of neutrons per fission that go on to fission other atoms of nuclear fuel).


Relatively high concentrations of radioactive xenon isotopes are also found emanating from nuclear reactors due to the release of this fission gas from cracked fuel rods or fissioning of uranium in cooling water.[citation needed] The concentrations of these isotopes are still usually low compared to the naturally occurring radioactive noble gas 222Rn.


Because xenon is a tracer for two parent isotopes, Xe isotope ratios in meteorites are a powerful tool for studying the formation of the solar system. The I-Xe method of dating gives the time elapsed between nucleosynthesis and the condensation of a solid object from the solar nebula (xenon being a gas, only that part of it that formed after condensation will be present inside the object). Xenon isotopes are also a powerful tool for understanding terrestrial differentiation. Excess 129Xe found in carbon dioxide well gases from New Mexico was believed to be from the decay of mantle-derived gases soon after Earth's formation.[8]




Contents





  • 1 Xenon-133


  • 2 Xenon-135


  • 3 Xenon-136


  • 4 List of isotopes

    • 4.1 Notes



  • 5 References




Xenon-133























Isotopes of xenon,  133Xe
General

Name, symbol
Isotopes of xenon,133Xe
Neutrons79
Protons54
Nuclide data
Natural abundancesyn
Half-life5.243 d (1)
Decay products
133Cs
Isotope mass132.9059107 u
Spin3/2+
Decay modes
Decay mode
Decay energy (MeV)
Beta0.427
Complete table of nuclides

Xenon-133 (sold as a drug under the brand name Xeneisol, ATC code V09EX03 (WHO)) is an isotope of xenon. It is a radionuclide that is inhaled to assess pulmonary function, and to image the lungs.[9] It is also used to image blood flow, particularly in the brain.[10]133Xe is also an important fission product.[citation needed] It is discharged to the atmosphere in small quantities by some nuclear power plants.[11]



Xenon-135



Xenon-135 is a radioactive isotope of xenon, produced as a fission product of uranium. It has a half-life of about 9.2 hours and is the most powerful known neutron-absorbing nuclear poison (having a neutron absorption cross-section of 2 million barns[12]). The overall yield of xenon-135 from fission is 6.3%, though most of this results from the radioactive decay of fission-produced tellurium-135 and iodine-135. Xe-135 exerts a significant effect on nuclear reactor operation (xenon pit). It is discharged to the atmosphere in small quantities by some nuclear power plants.[11]



Xenon-136


Xenon-136 is an isotope of xenon that undergoes double beta decay to barium-136 with a very long half life of 2.11×1021 years, more than 10 orders of magnitude longer than the age of the universe ((13.799±0.021)×109 years).



List of isotopes








































































































































































































































































































































































































































































































































nuclide
symbol
Z(p)
N(n)
 
isotopic mass (u)
 
half-life
decay
mode(s)[13][n 1]
daughter
isotope(s)[n 2]
nuclear
spin and
parity
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy

108Xe[7]
54
54

58(+106-23) µs

α

104Te
0+



109Xe
54
55

13(2) ms
α

105Te




110Xe
54
56
109.94428(14)
310(190) ms
[105(+35−25) ms]

β+

110I
0+


α

106Te

111Xe
54
57
110.94160(33)#
740(200) ms
β+ (90%)

111I
5/2+#


α (10%)

107Te

112Xe
54
58
111.93562(11)
2.7(8) s
β+ (99.1%)

112I
0+


α (.9%)

108Te

113Xe
54
59
112.93334(9)
2.74(8) s
β+ (92.98%)

113I
(5/2+)#


β+, p (7%)

112Te
α (.011%)

109Te
β+, α (.007%)

109Sb

114Xe
54
60
113.927980(12)
10.0(4) s
β+
114I
0+



115Xe
54
61
114.926294(13)
18(4) s
β+ (99.65%)

115I
(5/2+)


β+, p (.34%)

114Te
β+, α (3×10−4%)

111Sb

116Xe
54
62
115.921581(14)
59(2) s
β+
116I
0+



117Xe
54
63
116.920359(11)
61(2) s
β+ (99.99%)

117I
5/2(+)


β+, p (.0029%)

116Te

118Xe
54
64
117.916179(11)
3.8(9) min
β+
118I
0+



119Xe
54
65
118.915411(11)
5.8(3) min
β+
119I
5/2(+)



120Xe
54
66
119.911784(13)
40(1) min
β+
120I
0+



121Xe
54
67
120.911462(12)
40.1(20) min
β+
121I
(5/2+)



122Xe
54
68
121.908368(12)
20.1(1) h
β+
122I
0+



123Xe
54
69
122.908482(10)
2.08(2) h

EC

123I
1/2+



123mXe
185.18(22) keV
5.49(26) µs


7/2(−)



124Xe
54
70
123.905893(2)

Observationally Stable[n 3]
0+
9.52(3)×10−4

125Xe
54
71
124.9063955(20)
16.9(2) h
β+
125I
1/2(+)



125m1Xe
252.60(14) keV
56.9(9) s

IT

125Xe
9/2(−)



125m2Xe
295.86(15) keV
0.14(3) µs


7/2(+)



126Xe
54
72
125.904274(7)

Observationally Stable[n 4]
0+
8.90(2)×10−4

127Xe
54
73
126.905184(4)
36.345(3) d
EC

127I
1/2+



127mXe
297.10(8) keV
69.2(9) s
IT

127Xe
9/2−



128Xe
54
74
127.9035313(15)

Stable[n 5]
0+
0.019102(8)


129Xe[n 6]
54
75
128.9047794(8)

Stable[n 5]
1/2+
0.264006(82)


129mXe
236.14(3) keV
8.88(2) d
IT

129Xe
11/2−



130Xe
54
76
129.9035080(8)

Stable[n 5]
0+
0.040710(13)


131Xe[n 7]
54
77
130.9050824(10)

Stable[n 5]
3/2+
0.212324(30)


131mXe
163.930(8) keV
11.934(21) d
IT

131Xe
11/2−



132Xe[n 7]
54
78
131.9041535(10)

Stable[n 5]
0+
0.269086(33)


132mXe
2752.27(17) keV
8.39(11) ms
IT

132Xe
(10+)



133Xe[n 7][n 8]
54
79
132.9059107(26)
5.2475(5) d
β
133Cs
3/2+



133mXe
233.221(18) keV
2.19(1) d
IT

133Xe
11/2−



134Xe[n 7]
54
80
133.9053945(9)

Observationally Stable[n 9]
0+
0.104357(21)


134m1Xe
1965.5(5) keV
290(17) ms
IT

134Xe
7−



134m2Xe
3025.2(15) keV
5(1) µs


(10+)



135Xe[n 10]
54
81
134.907227(5)
9.14(2) h
β
135Cs
3/2+



135mXe
526.551(13) keV
15.29(5) min
IT (99.99%)

135Xe
11/2−


β (.004%)

135Cs

136Xe[n 11]
54
82
135.907219(8)

2.165(0.016 (stat), 0.059 (sys))×1021 y[1]
ββ
136Ba
0+
0.088573(44)


136mXe
1891.703(14) keV
2.95(9) µs


6+



137Xe
54
83
136.911562(8)
3.818(13) min
β
137Cs
7/2−



138Xe
54
84
137.91395(5)
14.08(8) min
β
138Cs
0+



139Xe
54
85
138.918793(22)
39.68(14) s
β
139Cs
3/2−



140Xe
54
86
139.92164(7)
13.60(10) s
β
140Cs
0+



141Xe
54
87
140.92665(10)
1.73(1) s
β (99.45%)

141Cs
5/2(−#)


β, n (.043%)

140Cs

142Xe
54
88
141.92971(11)
1.22(2) s
β (99.59%)

142Cs
0+


β, n (.41%)

141Cs

143Xe
54
89
142.93511(21)#
0.511(6) s
β
143Cs
5/2−



144Xe
54
90
143.93851(32)#
0.388(7) s
β
144Cs
0+


β, n

143Cs

145Xe
54
91
144.94407(32)#
188(4) ms
β
145Cs
(3/2−)#



146Xe
54
92
145.94775(43)#
146(6) ms
β
146Cs
0+



147Xe
54
93
146.95356(43)#
130(80) ms
[0.10(+10−5) s]
β
147Cs
3/2−#


β, n

146Cs


  1. ^ Abbreviations:
    EC: Electron capture
    IT: Isomeric transition



  2. ^ Bold for stable isotopes


  3. ^ Suspected of undergoing β+β+ decay to 124Te with a half-life over 48×1015 years


  4. ^ Suspected of undergoing β+β+ decay to 126Te


  5. ^ abcde Theoretically capable of spontaneous fission


  6. ^ Used in a method of radiodating groundwater and to infer certain events in the Solar System's history


  7. ^ abcd Fission product


  8. ^ Has medical uses


  9. ^ Suspected of undergoing ββ decay to 134Ba with a half-life over 11×1015 years


  10. ^ Most powerful known neutron absorber, produced in nuclear power plants as a decay product of 135I, itself a decay product of 135Te, a fission product. Normally absorbs neutrons in the high neutron flux environments to become 136Xe; see iodine pit for more information


  11. ^ Primordial radionuclide



Notes


  • The isotopic composition refers to that in air.

  • Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.

  • Commercially available materials may have been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations from the given mass and composition can occur.

  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.

  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.


References




  1. ^ abc Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Cook, S.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Devoe, R.; Delaquis, S.; Dobi, A.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; et al. (2014). "Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector". Physical Review C. 89. arXiv:1306.6106. Bibcode:2014PhRvC..89a5502A. doi:10.1103/PhysRevC.89.015502..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.


  3. ^ Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017), "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF), Chinese Physics C, 41 (3): 030003–1—030003–442, doi:10.1088/1674-1137/41/3/030003


  4. ^ Status of ββ-decay in Xenon, Roland Lüscher, accessed on line September 17, 2007. Archived September 27, 2007, at the Wayback Machine


  5. ^ Barros, N.; Thurn, J.; Zuber, K. (2014). "Double beta decay searches of 134Xe, 126Xe, and 124Xe with large scale Xe detectors". Journal of Physics G. 41 (11): 115105–1–115105–12. arXiv:1409.8308. doi:10.1088/0954-3899/41/11/115105.


  6. ^ Rajam, J. B. (1960). Atomic Physics (7th ed.). Delhi: S. Chand and Co. ISBN 978-81-219-1809-1.


  7. ^ ab Auranen, K.; et al. (2018). "Superallowed α decay to doubly magic 100Sn" (PDF). Physical Review Letters. 121 (18): 182501. doi:10.1103/PhysRevLett.121.182501. PMID 30444390.


  8. ^ Boulos, M. S.; Manuel, O. K. (1971). "The xenon record of extinct radioactivities in the Earth". Science. 174 (4016): 1334–1336. Bibcode:1971Sci...174.1334B. doi:10.1126/science.174.4016.1334. PMID 17801897.


  9. ^ Jones, R. L.; Sproule, B. J.; Overton, T. R. (1978). "Measurement of regional ventilation and lung perfusion with Xe-133". Journal of Nuclear Medicine. 19 (10): 1187–1188. PMID 722337.


  10. ^ Hoshi, H.; Jinnouchi, S.; Watanabe, K.; Onishi, T.; Uwada, O.; Nakano, S.; Kinoshita, K. (1987). "Cerebral blood flow imaging in patients with brain tumor and arterio-venous malformation using Tc-99m hexamethylpropylene-amine oxime--a comparison with Xe-133 and IMP". Kaku Igaku. 24 (11): 1617–1623. PMID 3502279.


  11. ^ ab Effluent Releases from Nuclear Power Plants and Fuel-Cycle Facilities. National Academies Press (US). 2012-03-29.


  12. ^ Chart of the Nuclides 13th Edition


  13. ^ "Universal Nuclide Chart". nucleonica. (Registration required (help)).



  • Isotope masses from Ame2003 Atomic Mass Evaluation by G. Audi, A. H. Wapstra, C. Thibault, J. Blachot and O. Bersillon in Nuclear Physics A729 (2003).

  • Isotopic compositions and standard atomic masses from:

    • J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.


    • M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.


  • Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.

    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001


    • National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.


    • Holden, N. E. (2004). "11. Table of the Isotopes". In Lide, David R. CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.








Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế

⃀⃉⃄⃅⃍,⃂₼₡₰⃉₡₿₢⃉₣⃄₯⃊₮₼₹₱₦₷⃄₪₼₶₳₫⃍₽ ₫₪₦⃆₠₥⃁₸₴₷⃊₹⃅⃈₰⃁₫ ⃎⃍₩₣₷ ₻₮⃊⃀⃄⃉₯,⃏⃊,₦⃅₪,₼⃀₾₧₷₾ ₻ ₸₡ ₾,₭⃈₴⃋,€⃁,₩ ₺⃌⃍⃁₱⃋⃋₨⃊⃁⃃₼,⃎,₱⃍₲₶₡ ⃍⃅₶₨₭,⃉₭₾₡₻⃀ ₼₹⃅₹,₻₭ ⃌