StandardScaler with Pipelines and GridSearchCV
I've put standardScaler on the pipeline, and
the results of CV_mlpregressor.predict(x_test), are weird. I think i must have to bring the values back from the standardScaler, but still can't figure how.
pipe_MLPRegressor = Pipeline([('scaler', StandardScaler()),
('MLPRegressor', MLPRegressor(random_state = 42))])
grid_params_MLPRegressor = [
'MLPRegressor__solver': ['lbfgs'],
'MLPRegressor__max_iter': [100,200,300,500],
'MLPRegressor__activation' : ['relu','logistic','tanh'],
'MLPRegressor__hidden_layer_sizes':[(2,), (4,),(2,2),(4,4),(4,2),(10,10),(2,2,2)],
]
CV_mlpregressor = GridSearchCV (estimator = pipe_MLPRegressor,
param_grid = grid_params_MLPRegressor,
cv = 5,return_train_score=True, verbose=0)
CV_mlpregressor.fit(x_train, y_train)
CV_mlpregressor.predict(x_test)
The Results:
array([ 2.67564153e+04, 1.90010572e+04, 9.62702942e+04, 3.98791931e+04,
1.48889808e+03, 7.08980726e+03, 3.86311279e+02, 7.05602301e+04,
4.06858486e+03, 4.29186303e+04, 3.86701735e+03, 6.30228075e+04,
6.78276925e+04, -5.91956287e+02, -7.37680434e+02, 3.07485001e+04,
4.81417953e+03, 5.18697686e+03, 1.61221952e+04, 1.33794944e+04,
-1.48375101e+03, 1.80891807e+04, 1.39740243e+04, 6.57156849e+04,
3.32962481e+04, 5.71332087e+05, 1.79130092e+03, 5.25642370e+04,
2.08111172e+04, 4.31060127e+04])
Thanks in advance.
python scikit-learn regression analysis
add a comment |
I've put standardScaler on the pipeline, and
the results of CV_mlpregressor.predict(x_test), are weird. I think i must have to bring the values back from the standardScaler, but still can't figure how.
pipe_MLPRegressor = Pipeline([('scaler', StandardScaler()),
('MLPRegressor', MLPRegressor(random_state = 42))])
grid_params_MLPRegressor = [
'MLPRegressor__solver': ['lbfgs'],
'MLPRegressor__max_iter': [100,200,300,500],
'MLPRegressor__activation' : ['relu','logistic','tanh'],
'MLPRegressor__hidden_layer_sizes':[(2,), (4,),(2,2),(4,4),(4,2),(10,10),(2,2,2)],
]
CV_mlpregressor = GridSearchCV (estimator = pipe_MLPRegressor,
param_grid = grid_params_MLPRegressor,
cv = 5,return_train_score=True, verbose=0)
CV_mlpregressor.fit(x_train, y_train)
CV_mlpregressor.predict(x_test)
The Results:
array([ 2.67564153e+04, 1.90010572e+04, 9.62702942e+04, 3.98791931e+04,
1.48889808e+03, 7.08980726e+03, 3.86311279e+02, 7.05602301e+04,
4.06858486e+03, 4.29186303e+04, 3.86701735e+03, 6.30228075e+04,
6.78276925e+04, -5.91956287e+02, -7.37680434e+02, 3.07485001e+04,
4.81417953e+03, 5.18697686e+03, 1.61221952e+04, 1.33794944e+04,
-1.48375101e+03, 1.80891807e+04, 1.39740243e+04, 6.57156849e+04,
3.32962481e+04, 5.71332087e+05, 1.79130092e+03, 5.25642370e+04,
2.08111172e+04, 4.31060127e+04])
Thanks in advance.
python scikit-learn regression analysis
add a comment |
I've put standardScaler on the pipeline, and
the results of CV_mlpregressor.predict(x_test), are weird. I think i must have to bring the values back from the standardScaler, but still can't figure how.
pipe_MLPRegressor = Pipeline([('scaler', StandardScaler()),
('MLPRegressor', MLPRegressor(random_state = 42))])
grid_params_MLPRegressor = [
'MLPRegressor__solver': ['lbfgs'],
'MLPRegressor__max_iter': [100,200,300,500],
'MLPRegressor__activation' : ['relu','logistic','tanh'],
'MLPRegressor__hidden_layer_sizes':[(2,), (4,),(2,2),(4,4),(4,2),(10,10),(2,2,2)],
]
CV_mlpregressor = GridSearchCV (estimator = pipe_MLPRegressor,
param_grid = grid_params_MLPRegressor,
cv = 5,return_train_score=True, verbose=0)
CV_mlpregressor.fit(x_train, y_train)
CV_mlpregressor.predict(x_test)
The Results:
array([ 2.67564153e+04, 1.90010572e+04, 9.62702942e+04, 3.98791931e+04,
1.48889808e+03, 7.08980726e+03, 3.86311279e+02, 7.05602301e+04,
4.06858486e+03, 4.29186303e+04, 3.86701735e+03, 6.30228075e+04,
6.78276925e+04, -5.91956287e+02, -7.37680434e+02, 3.07485001e+04,
4.81417953e+03, 5.18697686e+03, 1.61221952e+04, 1.33794944e+04,
-1.48375101e+03, 1.80891807e+04, 1.39740243e+04, 6.57156849e+04,
3.32962481e+04, 5.71332087e+05, 1.79130092e+03, 5.25642370e+04,
2.08111172e+04, 4.31060127e+04])
Thanks in advance.
python scikit-learn regression analysis
I've put standardScaler on the pipeline, and
the results of CV_mlpregressor.predict(x_test), are weird. I think i must have to bring the values back from the standardScaler, but still can't figure how.
pipe_MLPRegressor = Pipeline([('scaler', StandardScaler()),
('MLPRegressor', MLPRegressor(random_state = 42))])
grid_params_MLPRegressor = [
'MLPRegressor__solver': ['lbfgs'],
'MLPRegressor__max_iter': [100,200,300,500],
'MLPRegressor__activation' : ['relu','logistic','tanh'],
'MLPRegressor__hidden_layer_sizes':[(2,), (4,),(2,2),(4,4),(4,2),(10,10),(2,2,2)],
]
CV_mlpregressor = GridSearchCV (estimator = pipe_MLPRegressor,
param_grid = grid_params_MLPRegressor,
cv = 5,return_train_score=True, verbose=0)
CV_mlpregressor.fit(x_train, y_train)
CV_mlpregressor.predict(x_test)
The Results:
array([ 2.67564153e+04, 1.90010572e+04, 9.62702942e+04, 3.98791931e+04,
1.48889808e+03, 7.08980726e+03, 3.86311279e+02, 7.05602301e+04,
4.06858486e+03, 4.29186303e+04, 3.86701735e+03, 6.30228075e+04,
6.78276925e+04, -5.91956287e+02, -7.37680434e+02, 3.07485001e+04,
4.81417953e+03, 5.18697686e+03, 1.61221952e+04, 1.33794944e+04,
-1.48375101e+03, 1.80891807e+04, 1.39740243e+04, 6.57156849e+04,
3.32962481e+04, 5.71332087e+05, 1.79130092e+03, 5.25642370e+04,
2.08111172e+04, 4.31060127e+04])
Thanks in advance.
python scikit-learn regression analysis
python scikit-learn regression analysis
edited Nov 11 '18 at 19:16
Lain Iwakura
asked Nov 11 '18 at 19:03
Lain IwakuraLain Iwakura
254
254
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
@Lian, I think you are doing everything in the correct way. Please check your data. I did an experiment with sklearn dataset and this works as expected.
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPRegressor
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
import numpy as np
x,y = load_boston(return_X_y=True)
xtrain, xtest, ytrain, ytest = train_test_split(x,y, random_state=6784)
pipe_MLPRegressor = Pipeline([('scaler', StandardScaler()),
('MLPRegressor', MLPRegressor(random_state = 42))])
grid_params_MLPRegressor = [
'MLPRegressor__solver': ['lbfgs'],
'MLPRegressor__max_iter': [100,200,300,500],
'MLPRegressor__activation' : ['relu','logistic','tanh'],
'MLPRegressor__hidden_layer_sizes':[(2,), (4,),(2,2),(4,4),(4,2),(10,10),(2,
2,2)],]
CV_mlpregressor = GridSearchCV (estimator = pipe_MLPRegressor,
param_grid = grid_params_MLPRegressor,
cv = 5,return_train_score=True, verbose=0)
CV_mlpregressor.fit(xtrain, ytrain)
ypred=CV_mlpregressor.predict(xtest)
print np.c_[ytest, ypred]
This prints
array([[ 29.9 , 30.79749986],
[ 22.5 , 24.52180656],
[ 22.6 , 18.9567779 ],
[ 28.7 , 22.17189123],
[ 13.8 , 19.16797811],
[ 21.2 , 24.63527335],
[ 11.3 , 13.58962076],
[ 23. , 18.33693455],
[ 12.7 , 15.52294714],
[ 23.3 , 26.65083451],
[ 25.3 , 24.04219813],
[ 22.6 , 19.81454969],
[ 36.2 , 22.16994764],
[ 17.9 , 11.1221789 ],
[ 18.5 , 17.84162452],
[ 16.8 , 22.99832673],
[ 20.3 , 20.22598426],
[ 23.9 , 26.80997945],
[ 17.6 , 16.08188321],
[ 23.2 , 18.5995955 ],
[ 48.3 , 43.37911488],
[ 19.1 , 22.36379857],
Thanks for your reply, I'll check my database!
– Lain Iwakura
Nov 12 '18 at 23:16
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53252156%2fstandardscaler-with-pipelines-and-gridsearchcv%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
@Lian, I think you are doing everything in the correct way. Please check your data. I did an experiment with sklearn dataset and this works as expected.
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPRegressor
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
import numpy as np
x,y = load_boston(return_X_y=True)
xtrain, xtest, ytrain, ytest = train_test_split(x,y, random_state=6784)
pipe_MLPRegressor = Pipeline([('scaler', StandardScaler()),
('MLPRegressor', MLPRegressor(random_state = 42))])
grid_params_MLPRegressor = [
'MLPRegressor__solver': ['lbfgs'],
'MLPRegressor__max_iter': [100,200,300,500],
'MLPRegressor__activation' : ['relu','logistic','tanh'],
'MLPRegressor__hidden_layer_sizes':[(2,), (4,),(2,2),(4,4),(4,2),(10,10),(2,
2,2)],]
CV_mlpregressor = GridSearchCV (estimator = pipe_MLPRegressor,
param_grid = grid_params_MLPRegressor,
cv = 5,return_train_score=True, verbose=0)
CV_mlpregressor.fit(xtrain, ytrain)
ypred=CV_mlpregressor.predict(xtest)
print np.c_[ytest, ypred]
This prints
array([[ 29.9 , 30.79749986],
[ 22.5 , 24.52180656],
[ 22.6 , 18.9567779 ],
[ 28.7 , 22.17189123],
[ 13.8 , 19.16797811],
[ 21.2 , 24.63527335],
[ 11.3 , 13.58962076],
[ 23. , 18.33693455],
[ 12.7 , 15.52294714],
[ 23.3 , 26.65083451],
[ 25.3 , 24.04219813],
[ 22.6 , 19.81454969],
[ 36.2 , 22.16994764],
[ 17.9 , 11.1221789 ],
[ 18.5 , 17.84162452],
[ 16.8 , 22.99832673],
[ 20.3 , 20.22598426],
[ 23.9 , 26.80997945],
[ 17.6 , 16.08188321],
[ 23.2 , 18.5995955 ],
[ 48.3 , 43.37911488],
[ 19.1 , 22.36379857],
Thanks for your reply, I'll check my database!
– Lain Iwakura
Nov 12 '18 at 23:16
add a comment |
@Lian, I think you are doing everything in the correct way. Please check your data. I did an experiment with sklearn dataset and this works as expected.
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPRegressor
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
import numpy as np
x,y = load_boston(return_X_y=True)
xtrain, xtest, ytrain, ytest = train_test_split(x,y, random_state=6784)
pipe_MLPRegressor = Pipeline([('scaler', StandardScaler()),
('MLPRegressor', MLPRegressor(random_state = 42))])
grid_params_MLPRegressor = [
'MLPRegressor__solver': ['lbfgs'],
'MLPRegressor__max_iter': [100,200,300,500],
'MLPRegressor__activation' : ['relu','logistic','tanh'],
'MLPRegressor__hidden_layer_sizes':[(2,), (4,),(2,2),(4,4),(4,2),(10,10),(2,
2,2)],]
CV_mlpregressor = GridSearchCV (estimator = pipe_MLPRegressor,
param_grid = grid_params_MLPRegressor,
cv = 5,return_train_score=True, verbose=0)
CV_mlpregressor.fit(xtrain, ytrain)
ypred=CV_mlpregressor.predict(xtest)
print np.c_[ytest, ypred]
This prints
array([[ 29.9 , 30.79749986],
[ 22.5 , 24.52180656],
[ 22.6 , 18.9567779 ],
[ 28.7 , 22.17189123],
[ 13.8 , 19.16797811],
[ 21.2 , 24.63527335],
[ 11.3 , 13.58962076],
[ 23. , 18.33693455],
[ 12.7 , 15.52294714],
[ 23.3 , 26.65083451],
[ 25.3 , 24.04219813],
[ 22.6 , 19.81454969],
[ 36.2 , 22.16994764],
[ 17.9 , 11.1221789 ],
[ 18.5 , 17.84162452],
[ 16.8 , 22.99832673],
[ 20.3 , 20.22598426],
[ 23.9 , 26.80997945],
[ 17.6 , 16.08188321],
[ 23.2 , 18.5995955 ],
[ 48.3 , 43.37911488],
[ 19.1 , 22.36379857],
Thanks for your reply, I'll check my database!
– Lain Iwakura
Nov 12 '18 at 23:16
add a comment |
@Lian, I think you are doing everything in the correct way. Please check your data. I did an experiment with sklearn dataset and this works as expected.
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPRegressor
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
import numpy as np
x,y = load_boston(return_X_y=True)
xtrain, xtest, ytrain, ytest = train_test_split(x,y, random_state=6784)
pipe_MLPRegressor = Pipeline([('scaler', StandardScaler()),
('MLPRegressor', MLPRegressor(random_state = 42))])
grid_params_MLPRegressor = [
'MLPRegressor__solver': ['lbfgs'],
'MLPRegressor__max_iter': [100,200,300,500],
'MLPRegressor__activation' : ['relu','logistic','tanh'],
'MLPRegressor__hidden_layer_sizes':[(2,), (4,),(2,2),(4,4),(4,2),(10,10),(2,
2,2)],]
CV_mlpregressor = GridSearchCV (estimator = pipe_MLPRegressor,
param_grid = grid_params_MLPRegressor,
cv = 5,return_train_score=True, verbose=0)
CV_mlpregressor.fit(xtrain, ytrain)
ypred=CV_mlpregressor.predict(xtest)
print np.c_[ytest, ypred]
This prints
array([[ 29.9 , 30.79749986],
[ 22.5 , 24.52180656],
[ 22.6 , 18.9567779 ],
[ 28.7 , 22.17189123],
[ 13.8 , 19.16797811],
[ 21.2 , 24.63527335],
[ 11.3 , 13.58962076],
[ 23. , 18.33693455],
[ 12.7 , 15.52294714],
[ 23.3 , 26.65083451],
[ 25.3 , 24.04219813],
[ 22.6 , 19.81454969],
[ 36.2 , 22.16994764],
[ 17.9 , 11.1221789 ],
[ 18.5 , 17.84162452],
[ 16.8 , 22.99832673],
[ 20.3 , 20.22598426],
[ 23.9 , 26.80997945],
[ 17.6 , 16.08188321],
[ 23.2 , 18.5995955 ],
[ 48.3 , 43.37911488],
[ 19.1 , 22.36379857],
@Lian, I think you are doing everything in the correct way. Please check your data. I did an experiment with sklearn dataset and this works as expected.
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPRegressor
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
import numpy as np
x,y = load_boston(return_X_y=True)
xtrain, xtest, ytrain, ytest = train_test_split(x,y, random_state=6784)
pipe_MLPRegressor = Pipeline([('scaler', StandardScaler()),
('MLPRegressor', MLPRegressor(random_state = 42))])
grid_params_MLPRegressor = [
'MLPRegressor__solver': ['lbfgs'],
'MLPRegressor__max_iter': [100,200,300,500],
'MLPRegressor__activation' : ['relu','logistic','tanh'],
'MLPRegressor__hidden_layer_sizes':[(2,), (4,),(2,2),(4,4),(4,2),(10,10),(2,
2,2)],]
CV_mlpregressor = GridSearchCV (estimator = pipe_MLPRegressor,
param_grid = grid_params_MLPRegressor,
cv = 5,return_train_score=True, verbose=0)
CV_mlpregressor.fit(xtrain, ytrain)
ypred=CV_mlpregressor.predict(xtest)
print np.c_[ytest, ypred]
This prints
array([[ 29.9 , 30.79749986],
[ 22.5 , 24.52180656],
[ 22.6 , 18.9567779 ],
[ 28.7 , 22.17189123],
[ 13.8 , 19.16797811],
[ 21.2 , 24.63527335],
[ 11.3 , 13.58962076],
[ 23. , 18.33693455],
[ 12.7 , 15.52294714],
[ 23.3 , 26.65083451],
[ 25.3 , 24.04219813],
[ 22.6 , 19.81454969],
[ 36.2 , 22.16994764],
[ 17.9 , 11.1221789 ],
[ 18.5 , 17.84162452],
[ 16.8 , 22.99832673],
[ 20.3 , 20.22598426],
[ 23.9 , 26.80997945],
[ 17.6 , 16.08188321],
[ 23.2 , 18.5995955 ],
[ 48.3 , 43.37911488],
[ 19.1 , 22.36379857],
answered Nov 12 '18 at 14:09
sukhbindersukhbinder
32733
32733
Thanks for your reply, I'll check my database!
– Lain Iwakura
Nov 12 '18 at 23:16
add a comment |
Thanks for your reply, I'll check my database!
– Lain Iwakura
Nov 12 '18 at 23:16
Thanks for your reply, I'll check my database!
– Lain Iwakura
Nov 12 '18 at 23:16
Thanks for your reply, I'll check my database!
– Lain Iwakura
Nov 12 '18 at 23:16
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53252156%2fstandardscaler-with-pipelines-and-gridsearchcv%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown