In Dask, can tensors be reshaped to 2D matrices in Dask without precomputing the size?
While trying to create a python base class capable of vectorizing scalar functions on Dask, I encountered a problem reshaping tensors to 2D matrices. Solving this issue would facilitate the creation of sklearn pipelines that operate interchangeably on Numpy, Pandas and Dask datatypes.
The following code works on Dask 0.18.2 but fails on Dask 0.19.4 and 0.20.0:
import dask
import dask.array
import dask.dataframe
import numpy
import pandas
def and1(x): return numpy.array([x, x+1], dtype=numpy.float32)
expected = numpy.array([[10, 11, 20, 21],
[30, 31, 40, 41]],
dtype=numpy.float32)
df = pandas.DataFrame.from_dict(
'c1': [10, 30], 'c2': [20, 40]
)
ddf = dask.dataframe.from_pandas(df, npartitions=2)
# Dask generalized universal function that outputs 2 values per input value
guf = dask.array.gufunc(
pyfunc=and1,
signature='()->(n)',
output_dtypes=numpy.float32,
output_sizes='n': 2,
vectorize=True,
allow_rechunk = False
)
da = guf(ddf)
da_reshaped = da.reshape((-1, numpy.prod(da.shape[1:])))
npa = da_reshaped.compute()
assert da.shape == (2, 2, 2) # (input rows, input cols, outputs per cols)
numpy.testing.assert_array_equal(expected, npa)
In Dask 0.19.4 and 0.20.0 reshape
raises a ValueError since the first element of da
s shape is NaN
(see the stack trace for details).
ValueErrorTraceback (most recent call last)
<ipython-input-847-ad2c41e1d88c> in <module>
24
25 da = guf(ddf)
---> 26 da_r = da.reshape((-1, numpy.prod(da.shape[1:])))
27 npa = da_r.compute()
28
/opt/conda/lib/python3.6/site-packages/dask/array/core.py in reshape(self, *shape)
1398 if len(shape) == 1 and not isinstance(shape[0], Number):
1399 shape = shape[0]
-> 1400 return reshape(self, shape)
1401
1402 def topk(self, k, axis=-1, split_every=None):
/opt/conda/lib/python3.6/site-packages/dask/array/reshape.py in reshape(x, shape)
160 if len(shape) == 1 and x.ndim == 1:
161 return x
--> 162 missing_size = sanitize_index(x.size / reduce(mul, known_sizes, 1))
163 shape = tuple(missing_size if s == -1 else s for s in shape)
164
/opt/conda/lib/python3.6/site-packages/dask/array/slicing.py in sanitize_index(ind)
58 _sanitize_index_element(ind.step))
59 elif isinstance(ind, Number):
---> 60 return _sanitize_index_element(ind)
61 elif is_dask_collection(ind):
62 return ind
/opt/conda/lib/python3.6/site-packages/dask/array/slicing.py in _sanitize_index_element(ind)
20 """Sanitize a one-element index."""
21 if isinstance(ind, Number):
---> 22 ind2 = int(ind)
23 if ind2 != ind:
24 raise IndexError("Bad index. Must be integer-like: %s" % ind)
ValueError: cannot convert float NaN to integer
Is there another way to reshape Dask Arrays in Dask 0.20.0+ without precomputing the size?
If so, is the reshaping a constant time operation as it appears to be in Numpy?
I want to create a matrix (shape = (R, C)) such that the first axis is not changed but all subsequent axes are merged in "C"
order (the default in both Dask and Numpy).
(BTW, I already saw: Reshape a dask array (obtained from a dask dataframe column))
python pandas numpy dask
add a comment |
While trying to create a python base class capable of vectorizing scalar functions on Dask, I encountered a problem reshaping tensors to 2D matrices. Solving this issue would facilitate the creation of sklearn pipelines that operate interchangeably on Numpy, Pandas and Dask datatypes.
The following code works on Dask 0.18.2 but fails on Dask 0.19.4 and 0.20.0:
import dask
import dask.array
import dask.dataframe
import numpy
import pandas
def and1(x): return numpy.array([x, x+1], dtype=numpy.float32)
expected = numpy.array([[10, 11, 20, 21],
[30, 31, 40, 41]],
dtype=numpy.float32)
df = pandas.DataFrame.from_dict(
'c1': [10, 30], 'c2': [20, 40]
)
ddf = dask.dataframe.from_pandas(df, npartitions=2)
# Dask generalized universal function that outputs 2 values per input value
guf = dask.array.gufunc(
pyfunc=and1,
signature='()->(n)',
output_dtypes=numpy.float32,
output_sizes='n': 2,
vectorize=True,
allow_rechunk = False
)
da = guf(ddf)
da_reshaped = da.reshape((-1, numpy.prod(da.shape[1:])))
npa = da_reshaped.compute()
assert da.shape == (2, 2, 2) # (input rows, input cols, outputs per cols)
numpy.testing.assert_array_equal(expected, npa)
In Dask 0.19.4 and 0.20.0 reshape
raises a ValueError since the first element of da
s shape is NaN
(see the stack trace for details).
ValueErrorTraceback (most recent call last)
<ipython-input-847-ad2c41e1d88c> in <module>
24
25 da = guf(ddf)
---> 26 da_r = da.reshape((-1, numpy.prod(da.shape[1:])))
27 npa = da_r.compute()
28
/opt/conda/lib/python3.6/site-packages/dask/array/core.py in reshape(self, *shape)
1398 if len(shape) == 1 and not isinstance(shape[0], Number):
1399 shape = shape[0]
-> 1400 return reshape(self, shape)
1401
1402 def topk(self, k, axis=-1, split_every=None):
/opt/conda/lib/python3.6/site-packages/dask/array/reshape.py in reshape(x, shape)
160 if len(shape) == 1 and x.ndim == 1:
161 return x
--> 162 missing_size = sanitize_index(x.size / reduce(mul, known_sizes, 1))
163 shape = tuple(missing_size if s == -1 else s for s in shape)
164
/opt/conda/lib/python3.6/site-packages/dask/array/slicing.py in sanitize_index(ind)
58 _sanitize_index_element(ind.step))
59 elif isinstance(ind, Number):
---> 60 return _sanitize_index_element(ind)
61 elif is_dask_collection(ind):
62 return ind
/opt/conda/lib/python3.6/site-packages/dask/array/slicing.py in _sanitize_index_element(ind)
20 """Sanitize a one-element index."""
21 if isinstance(ind, Number):
---> 22 ind2 = int(ind)
23 if ind2 != ind:
24 raise IndexError("Bad index. Must be integer-like: %s" % ind)
ValueError: cannot convert float NaN to integer
Is there another way to reshape Dask Arrays in Dask 0.20.0+ without precomputing the size?
If so, is the reshaping a constant time operation as it appears to be in Numpy?
I want to create a matrix (shape = (R, C)) such that the first axis is not changed but all subsequent axes are merged in "C"
order (the default in both Dask and Numpy).
(BTW, I already saw: Reshape a dask array (obtained from a dask dataframe column))
python pandas numpy dask
add a comment |
While trying to create a python base class capable of vectorizing scalar functions on Dask, I encountered a problem reshaping tensors to 2D matrices. Solving this issue would facilitate the creation of sklearn pipelines that operate interchangeably on Numpy, Pandas and Dask datatypes.
The following code works on Dask 0.18.2 but fails on Dask 0.19.4 and 0.20.0:
import dask
import dask.array
import dask.dataframe
import numpy
import pandas
def and1(x): return numpy.array([x, x+1], dtype=numpy.float32)
expected = numpy.array([[10, 11, 20, 21],
[30, 31, 40, 41]],
dtype=numpy.float32)
df = pandas.DataFrame.from_dict(
'c1': [10, 30], 'c2': [20, 40]
)
ddf = dask.dataframe.from_pandas(df, npartitions=2)
# Dask generalized universal function that outputs 2 values per input value
guf = dask.array.gufunc(
pyfunc=and1,
signature='()->(n)',
output_dtypes=numpy.float32,
output_sizes='n': 2,
vectorize=True,
allow_rechunk = False
)
da = guf(ddf)
da_reshaped = da.reshape((-1, numpy.prod(da.shape[1:])))
npa = da_reshaped.compute()
assert da.shape == (2, 2, 2) # (input rows, input cols, outputs per cols)
numpy.testing.assert_array_equal(expected, npa)
In Dask 0.19.4 and 0.20.0 reshape
raises a ValueError since the first element of da
s shape is NaN
(see the stack trace for details).
ValueErrorTraceback (most recent call last)
<ipython-input-847-ad2c41e1d88c> in <module>
24
25 da = guf(ddf)
---> 26 da_r = da.reshape((-1, numpy.prod(da.shape[1:])))
27 npa = da_r.compute()
28
/opt/conda/lib/python3.6/site-packages/dask/array/core.py in reshape(self, *shape)
1398 if len(shape) == 1 and not isinstance(shape[0], Number):
1399 shape = shape[0]
-> 1400 return reshape(self, shape)
1401
1402 def topk(self, k, axis=-1, split_every=None):
/opt/conda/lib/python3.6/site-packages/dask/array/reshape.py in reshape(x, shape)
160 if len(shape) == 1 and x.ndim == 1:
161 return x
--> 162 missing_size = sanitize_index(x.size / reduce(mul, known_sizes, 1))
163 shape = tuple(missing_size if s == -1 else s for s in shape)
164
/opt/conda/lib/python3.6/site-packages/dask/array/slicing.py in sanitize_index(ind)
58 _sanitize_index_element(ind.step))
59 elif isinstance(ind, Number):
---> 60 return _sanitize_index_element(ind)
61 elif is_dask_collection(ind):
62 return ind
/opt/conda/lib/python3.6/site-packages/dask/array/slicing.py in _sanitize_index_element(ind)
20 """Sanitize a one-element index."""
21 if isinstance(ind, Number):
---> 22 ind2 = int(ind)
23 if ind2 != ind:
24 raise IndexError("Bad index. Must be integer-like: %s" % ind)
ValueError: cannot convert float NaN to integer
Is there another way to reshape Dask Arrays in Dask 0.20.0+ without precomputing the size?
If so, is the reshaping a constant time operation as it appears to be in Numpy?
I want to create a matrix (shape = (R, C)) such that the first axis is not changed but all subsequent axes are merged in "C"
order (the default in both Dask and Numpy).
(BTW, I already saw: Reshape a dask array (obtained from a dask dataframe column))
python pandas numpy dask
While trying to create a python base class capable of vectorizing scalar functions on Dask, I encountered a problem reshaping tensors to 2D matrices. Solving this issue would facilitate the creation of sklearn pipelines that operate interchangeably on Numpy, Pandas and Dask datatypes.
The following code works on Dask 0.18.2 but fails on Dask 0.19.4 and 0.20.0:
import dask
import dask.array
import dask.dataframe
import numpy
import pandas
def and1(x): return numpy.array([x, x+1], dtype=numpy.float32)
expected = numpy.array([[10, 11, 20, 21],
[30, 31, 40, 41]],
dtype=numpy.float32)
df = pandas.DataFrame.from_dict(
'c1': [10, 30], 'c2': [20, 40]
)
ddf = dask.dataframe.from_pandas(df, npartitions=2)
# Dask generalized universal function that outputs 2 values per input value
guf = dask.array.gufunc(
pyfunc=and1,
signature='()->(n)',
output_dtypes=numpy.float32,
output_sizes='n': 2,
vectorize=True,
allow_rechunk = False
)
da = guf(ddf)
da_reshaped = da.reshape((-1, numpy.prod(da.shape[1:])))
npa = da_reshaped.compute()
assert da.shape == (2, 2, 2) # (input rows, input cols, outputs per cols)
numpy.testing.assert_array_equal(expected, npa)
In Dask 0.19.4 and 0.20.0 reshape
raises a ValueError since the first element of da
s shape is NaN
(see the stack trace for details).
ValueErrorTraceback (most recent call last)
<ipython-input-847-ad2c41e1d88c> in <module>
24
25 da = guf(ddf)
---> 26 da_r = da.reshape((-1, numpy.prod(da.shape[1:])))
27 npa = da_r.compute()
28
/opt/conda/lib/python3.6/site-packages/dask/array/core.py in reshape(self, *shape)
1398 if len(shape) == 1 and not isinstance(shape[0], Number):
1399 shape = shape[0]
-> 1400 return reshape(self, shape)
1401
1402 def topk(self, k, axis=-1, split_every=None):
/opt/conda/lib/python3.6/site-packages/dask/array/reshape.py in reshape(x, shape)
160 if len(shape) == 1 and x.ndim == 1:
161 return x
--> 162 missing_size = sanitize_index(x.size / reduce(mul, known_sizes, 1))
163 shape = tuple(missing_size if s == -1 else s for s in shape)
164
/opt/conda/lib/python3.6/site-packages/dask/array/slicing.py in sanitize_index(ind)
58 _sanitize_index_element(ind.step))
59 elif isinstance(ind, Number):
---> 60 return _sanitize_index_element(ind)
61 elif is_dask_collection(ind):
62 return ind
/opt/conda/lib/python3.6/site-packages/dask/array/slicing.py in _sanitize_index_element(ind)
20 """Sanitize a one-element index."""
21 if isinstance(ind, Number):
---> 22 ind2 = int(ind)
23 if ind2 != ind:
24 raise IndexError("Bad index. Must be integer-like: %s" % ind)
ValueError: cannot convert float NaN to integer
Is there another way to reshape Dask Arrays in Dask 0.20.0+ without precomputing the size?
If so, is the reshaping a constant time operation as it appears to be in Numpy?
I want to create a matrix (shape = (R, C)) such that the first axis is not changed but all subsequent axes are merged in "C"
order (the default in both Dask and Numpy).
(BTW, I already saw: Reshape a dask array (obtained from a dask dataframe column))
python pandas numpy dask
python pandas numpy dask
asked Nov 10 at 1:42
deaktator
163
163
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53235320%2fin-dask-can-tensors-be-reshaped-to-2d-matrices-in-dask-without-precomputing-the%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53235320%2fin-dask-can-tensors-be-reshaped-to-2d-matrices-in-dask-without-precomputing-the%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown