Conditionally offseting values by group with Pandas

Conditionally offseting values by group with Pandas



I am looking for a more efficient and maintainable way to offset values conditionally by group. Easiest to show an example.



Value is always non-negative for Offset == False and always negative for Offset == True. What I'm looking to do is "collapse" positive Values (flooring at 0) against negative ones by Label.


Offset == False


Offset == True



Note Label + Offset combined are always unique. Since Offset is Boolean, you can only have a maximum of 2 rows per Label.


Label


Offset


Offset



Example 1


df = pd.DataFrame('Label': ['L1', 'L2', 'L3', 'L3'],
'Offset': [False, False, False, True],
'Value': [100, 100, 50, -100])

# input
# Label Offset Value
# 0 L1 False 100
# 1 L2 False 100
# 2 L3 False 50
# 3 L3 True -100



Desired output:


Label Offset Value
0 L1 False 100
1 L2 False 100
2 L3 False 0
3 L3 True -50



Example 2


df = pd.DataFrame('Label': ['L1', 'L2', 'L3', 'L3'],
'Offset': [False, False, False, True],
'Value': [100, 100, 100, -50])

# input
# Label Offset Value
# 0 L1 False 100
# 1 L2 False 100
# 2 L3 False 100
# 3 L3 True -50



Desired output:


Label Offset Value
0 L1 False 100
1 L2 False 100
2 L3 False 50
3 L3 True 0



Current inefficient solution



My current solution is a manual loop which is slow and difficult to maintain:


for label in df['Label'].unique():
mask = df['Label'] == label
if len(df.loc[mask]) == 2:
val_false = df.loc[~df['Offset'] & mask, 'Value'].iloc[0]
val_true = df.loc[df['Offset'] & mask, 'Value'].iloc[0]
if val_false > abs(val_true):
df.loc[~df['Offset'] & mask, 'Value'] += val_true
df.loc[df['Offset'] & mask, 'Value'] = 0
else:
df.loc[~df['Offset'] & mask, 'Value'] = 0
df.loc[df['Offset'] & mask, 'Value'] += val_false



I'm looking for a vectorised, or at least partially vectorised, solution to improve performance and get rid of this mess.





if there where 3 L3 values (100, -25, -25) then it would translate into 50, 0, 0?
– Yuca
Aug 24 at 12:08





@Yuca, I'll add a note, Label + Offset combined are always unique. Since Offset is Boolean, you can only have a maximum of 2 rows per Label.
– jpp
Aug 24 at 12:09



Label


Offset


Offset




3 Answers
3



Maybe:


label_sums = df.Value.groupby(df.Label).transform(sum)
df["new_sum"] = label_sums.where(np.sign(label_sums) == np.sign(df.Value), 0)



which gives me


In [42]: df
Out[42]:
Label Offset Value new_sum
0 L1 False 100 100
1 L2 False 100 100
2 L3 False 50 0
3 L3 True -100 -50
4 L4 False 100 100
5 L5 False 100 100
6 L6 False 100 50
7 L6 True -50 0





Yes, thank you!
– jpp
Aug 24 at 12:36





I have a nugget of something. @jpp you can see my deleted post. I'll try to revisit later for my own sake (-:
– piRSquared
Aug 24 at 12:52





@piRSquared, Will do, thks.
– jpp
Aug 24 at 12:54





@jpp currently my deleted post is a complete rip off of this answer just in Numpy form.
– piRSquared
Aug 24 at 13:32



This is the best I've got: create an auxiliary column to find where to display the aggregate and then set the other members of the group to 0


df['aux'] = abs(df['Value'])
idx = abs(df.groupby(['Label'])['aux'].transform(max)) == abs(df['aux'])
df['aux2'] = False
df.loc[idx,'aux2'] = True
df = df.join(df.groupby('Label').Value.sum(), on='Label', rsuffix = 'jpp')
df.loc[df['aux2']==False, 'Valuejpp'] = 0
df = df.drop(['aux', 'aux2','Value'], axis = 1)



Result


Label Offset Valuejpp
0 L1 False 100
1 L2 False 100
2 L3 False 0
3 L3 True -50





the difference in the quality of the answers between 191k rep and 1k rep shows, but it works! :)
– Yuca
Aug 24 at 12:45



Data From DSM


df1=df.copy()

df.loc[df.Offset,'Value']=df.Value.abs()

s1=(df.groupby('Label').Value.diff().lt(0)).groupby(df['Label']).transform('any')
s2=df.groupby('Label').Value.transform('count')

s3=df1.groupby('Label').Value.transform('sum')
np.where(s2<=1,df1.Value,np.where(s1,s3*(-df1.Offset),s3*df1.Offset))

Out[757]: array([100, 100, 0, -50, 100, 100, 50, 0], dtype=int64)





You can do it with np.select , I am pretty sure you know how to do it man
– Wen
Aug 24 at 12:58





Yep, I think I had a brain freeze! But DSM's solution is also smart IMO.
– jpp
Aug 24 at 13:08






@jpp haha ,I had it sometimes too .
– Wen
Aug 24 at 13:09






By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.

Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế

⃀⃉⃄⃅⃍,⃂₼₡₰⃉₡₿₢⃉₣⃄₯⃊₮₼₹₱₦₷⃄₪₼₶₳₫⃍₽ ₫₪₦⃆₠₥⃁₸₴₷⃊₹⃅⃈₰⃁₫ ⃎⃍₩₣₷ ₻₮⃊⃀⃄⃉₯,⃏⃊,₦⃅₪,₼⃀₾₧₷₾ ₻ ₸₡ ₾,₭⃈₴⃋,€⃁,₩ ₺⃌⃍⃁₱⃋⃋₨⃊⃁⃃₼,⃎,₱⃍₲₶₡ ⃍⃅₶₨₭,⃉₭₾₡₻⃀ ₼₹⃅₹,₻₭ ⃌