Is there an accessible exposition of Gelfand-Tsetlin theory?










19












$begingroup$


I'm hoping to start an undergraduate on a project that involves understanding a bit of Gelfand-Tsetlin theory, and have been tearing my hair out looking for a good reference for them to look at. Basically what I would want is something at the level of Vershik-Okounkov - A new approach to the representation theory of symmetric groups. 2 (or the book Ceccherini-Silberstein, Scarabotti, and Tolli - Representation theory of the symmetric groups based on it) but for finite dimensional representations of $mathrmGL_n$. I feel like such a book or at least some expository notes should exist, but I have had zero luck finding any.










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    Perhaps such a reference doesn't exist, especially if you and Tim have both looked for it and not found it. If it did exist, it would probably be within the scope of the Graduate Journal of Mathematics, gradmath.org, which "publishes original work as well as expository work [that] helps make more widely accessible significant mathematical ideas, constructions or theorems." One option would be to have your student write up the sort of thing you're looking for and submit it to GJM. The website says "High quality senior theses will find GJM to be a great venue"
    $endgroup$
    – David White
    Nov 14 '18 at 18:00










  • $begingroup$
    How about the Allen's notes from when he taught Lie groups in 2001-2002? I remember there was one on Gelfand-Tsetlin (or Gelfand-Cetlin as Allen spelled it). Those notes aren't online anymore, but hopefully Allen still has a copy.
    $endgroup$
    – Joel Kamnitzer
    Dec 8 '18 at 4:40










  • $begingroup$
    @JoelKamnitzer I found some notes on Allen’s website, but they were not really the style I was looking for. In particular, they assumed a lot of familiarity with the WCF in a way that didn’t really match what I had in mind.
    $endgroup$
    – Ben Webster
    Dec 11 '18 at 1:42















19












$begingroup$


I'm hoping to start an undergraduate on a project that involves understanding a bit of Gelfand-Tsetlin theory, and have been tearing my hair out looking for a good reference for them to look at. Basically what I would want is something at the level of Vershik-Okounkov - A new approach to the representation theory of symmetric groups. 2 (or the book Ceccherini-Silberstein, Scarabotti, and Tolli - Representation theory of the symmetric groups based on it) but for finite dimensional representations of $mathrmGL_n$. I feel like such a book or at least some expository notes should exist, but I have had zero luck finding any.










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    Perhaps such a reference doesn't exist, especially if you and Tim have both looked for it and not found it. If it did exist, it would probably be within the scope of the Graduate Journal of Mathematics, gradmath.org, which "publishes original work as well as expository work [that] helps make more widely accessible significant mathematical ideas, constructions or theorems." One option would be to have your student write up the sort of thing you're looking for and submit it to GJM. The website says "High quality senior theses will find GJM to be a great venue"
    $endgroup$
    – David White
    Nov 14 '18 at 18:00










  • $begingroup$
    How about the Allen's notes from when he taught Lie groups in 2001-2002? I remember there was one on Gelfand-Tsetlin (or Gelfand-Cetlin as Allen spelled it). Those notes aren't online anymore, but hopefully Allen still has a copy.
    $endgroup$
    – Joel Kamnitzer
    Dec 8 '18 at 4:40










  • $begingroup$
    @JoelKamnitzer I found some notes on Allen’s website, but they were not really the style I was looking for. In particular, they assumed a lot of familiarity with the WCF in a way that didn’t really match what I had in mind.
    $endgroup$
    – Ben Webster
    Dec 11 '18 at 1:42













19












19








19


4



$begingroup$


I'm hoping to start an undergraduate on a project that involves understanding a bit of Gelfand-Tsetlin theory, and have been tearing my hair out looking for a good reference for them to look at. Basically what I would want is something at the level of Vershik-Okounkov - A new approach to the representation theory of symmetric groups. 2 (or the book Ceccherini-Silberstein, Scarabotti, and Tolli - Representation theory of the symmetric groups based on it) but for finite dimensional representations of $mathrmGL_n$. I feel like such a book or at least some expository notes should exist, but I have had zero luck finding any.










share|cite|improve this question











$endgroup$




I'm hoping to start an undergraduate on a project that involves understanding a bit of Gelfand-Tsetlin theory, and have been tearing my hair out looking for a good reference for them to look at. Basically what I would want is something at the level of Vershik-Okounkov - A new approach to the representation theory of symmetric groups. 2 (or the book Ceccherini-Silberstein, Scarabotti, and Tolli - Representation theory of the symmetric groups based on it) but for finite dimensional representations of $mathrmGL_n$. I feel like such a book or at least some expository notes should exist, but I have had zero luck finding any.







reference-request co.combinatorics rt.representation-theory lie-algebras






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 26 '18 at 15:59









LSpice

2,90322628




2,90322628










asked Nov 14 '18 at 2:54









Ben WebsterBen Webster

32.8k993207




32.8k993207







  • 3




    $begingroup$
    Perhaps such a reference doesn't exist, especially if you and Tim have both looked for it and not found it. If it did exist, it would probably be within the scope of the Graduate Journal of Mathematics, gradmath.org, which "publishes original work as well as expository work [that] helps make more widely accessible significant mathematical ideas, constructions or theorems." One option would be to have your student write up the sort of thing you're looking for and submit it to GJM. The website says "High quality senior theses will find GJM to be a great venue"
    $endgroup$
    – David White
    Nov 14 '18 at 18:00










  • $begingroup$
    How about the Allen's notes from when he taught Lie groups in 2001-2002? I remember there was one on Gelfand-Tsetlin (or Gelfand-Cetlin as Allen spelled it). Those notes aren't online anymore, but hopefully Allen still has a copy.
    $endgroup$
    – Joel Kamnitzer
    Dec 8 '18 at 4:40










  • $begingroup$
    @JoelKamnitzer I found some notes on Allen’s website, but they were not really the style I was looking for. In particular, they assumed a lot of familiarity with the WCF in a way that didn’t really match what I had in mind.
    $endgroup$
    – Ben Webster
    Dec 11 '18 at 1:42












  • 3




    $begingroup$
    Perhaps such a reference doesn't exist, especially if you and Tim have both looked for it and not found it. If it did exist, it would probably be within the scope of the Graduate Journal of Mathematics, gradmath.org, which "publishes original work as well as expository work [that] helps make more widely accessible significant mathematical ideas, constructions or theorems." One option would be to have your student write up the sort of thing you're looking for and submit it to GJM. The website says "High quality senior theses will find GJM to be a great venue"
    $endgroup$
    – David White
    Nov 14 '18 at 18:00










  • $begingroup$
    How about the Allen's notes from when he taught Lie groups in 2001-2002? I remember there was one on Gelfand-Tsetlin (or Gelfand-Cetlin as Allen spelled it). Those notes aren't online anymore, but hopefully Allen still has a copy.
    $endgroup$
    – Joel Kamnitzer
    Dec 8 '18 at 4:40










  • $begingroup$
    @JoelKamnitzer I found some notes on Allen’s website, but they were not really the style I was looking for. In particular, they assumed a lot of familiarity with the WCF in a way that didn’t really match what I had in mind.
    $endgroup$
    – Ben Webster
    Dec 11 '18 at 1:42







3




3




$begingroup$
Perhaps such a reference doesn't exist, especially if you and Tim have both looked for it and not found it. If it did exist, it would probably be within the scope of the Graduate Journal of Mathematics, gradmath.org, which "publishes original work as well as expository work [that] helps make more widely accessible significant mathematical ideas, constructions or theorems." One option would be to have your student write up the sort of thing you're looking for and submit it to GJM. The website says "High quality senior theses will find GJM to be a great venue"
$endgroup$
– David White
Nov 14 '18 at 18:00




$begingroup$
Perhaps such a reference doesn't exist, especially if you and Tim have both looked for it and not found it. If it did exist, it would probably be within the scope of the Graduate Journal of Mathematics, gradmath.org, which "publishes original work as well as expository work [that] helps make more widely accessible significant mathematical ideas, constructions or theorems." One option would be to have your student write up the sort of thing you're looking for and submit it to GJM. The website says "High quality senior theses will find GJM to be a great venue"
$endgroup$
– David White
Nov 14 '18 at 18:00












$begingroup$
How about the Allen's notes from when he taught Lie groups in 2001-2002? I remember there was one on Gelfand-Tsetlin (or Gelfand-Cetlin as Allen spelled it). Those notes aren't online anymore, but hopefully Allen still has a copy.
$endgroup$
– Joel Kamnitzer
Dec 8 '18 at 4:40




$begingroup$
How about the Allen's notes from when he taught Lie groups in 2001-2002? I remember there was one on Gelfand-Tsetlin (or Gelfand-Cetlin as Allen spelled it). Those notes aren't online anymore, but hopefully Allen still has a copy.
$endgroup$
– Joel Kamnitzer
Dec 8 '18 at 4:40












$begingroup$
@JoelKamnitzer I found some notes on Allen’s website, but they were not really the style I was looking for. In particular, they assumed a lot of familiarity with the WCF in a way that didn’t really match what I had in mind.
$endgroup$
– Ben Webster
Dec 11 '18 at 1:42




$begingroup$
@JoelKamnitzer I found some notes on Allen’s website, but they were not really the style I was looking for. In particular, they assumed a lot of familiarity with the WCF in a way that didn’t really match what I had in mind.
$endgroup$
– Ben Webster
Dec 11 '18 at 1:42










1 Answer
1






active

oldest

votes


















14












$begingroup$

Good question. I've found this to be a difficult subject to get into myself. An abstract approach can seem arcane, but concrete constructions can be complicated and messy. You might try the paper Hersh and Lenart - Combinatorial construction of weight bases: The Gelfand–Tsetlin basis as a starting point. They take a concrete approach, which has the advantage that you can start computing with small examples relatively quickly. A disadvantage is that your student might miss the big picture of how all this fits into the general representation theory of classical Lie algebras. For that, perhaps the work of Molev, such as Molev - Gelfand–Tsetlin bases for classical Lie algebras, might be helpful.






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315268%2fis-there-an-accessible-exposition-of-gelfand-tsetlin-theory%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    14












    $begingroup$

    Good question. I've found this to be a difficult subject to get into myself. An abstract approach can seem arcane, but concrete constructions can be complicated and messy. You might try the paper Hersh and Lenart - Combinatorial construction of weight bases: The Gelfand–Tsetlin basis as a starting point. They take a concrete approach, which has the advantage that you can start computing with small examples relatively quickly. A disadvantage is that your student might miss the big picture of how all this fits into the general representation theory of classical Lie algebras. For that, perhaps the work of Molev, such as Molev - Gelfand–Tsetlin bases for classical Lie algebras, might be helpful.






    share|cite|improve this answer











    $endgroup$

















      14












      $begingroup$

      Good question. I've found this to be a difficult subject to get into myself. An abstract approach can seem arcane, but concrete constructions can be complicated and messy. You might try the paper Hersh and Lenart - Combinatorial construction of weight bases: The Gelfand–Tsetlin basis as a starting point. They take a concrete approach, which has the advantage that you can start computing with small examples relatively quickly. A disadvantage is that your student might miss the big picture of how all this fits into the general representation theory of classical Lie algebras. For that, perhaps the work of Molev, such as Molev - Gelfand–Tsetlin bases for classical Lie algebras, might be helpful.






      share|cite|improve this answer











      $endgroup$















        14












        14








        14





        $begingroup$

        Good question. I've found this to be a difficult subject to get into myself. An abstract approach can seem arcane, but concrete constructions can be complicated and messy. You might try the paper Hersh and Lenart - Combinatorial construction of weight bases: The Gelfand–Tsetlin basis as a starting point. They take a concrete approach, which has the advantage that you can start computing with small examples relatively quickly. A disadvantage is that your student might miss the big picture of how all this fits into the general representation theory of classical Lie algebras. For that, perhaps the work of Molev, such as Molev - Gelfand–Tsetlin bases for classical Lie algebras, might be helpful.






        share|cite|improve this answer











        $endgroup$



        Good question. I've found this to be a difficult subject to get into myself. An abstract approach can seem arcane, but concrete constructions can be complicated and messy. You might try the paper Hersh and Lenart - Combinatorial construction of weight bases: The Gelfand–Tsetlin basis as a starting point. They take a concrete approach, which has the advantage that you can start computing with small examples relatively quickly. A disadvantage is that your student might miss the big picture of how all this fits into the general representation theory of classical Lie algebras. For that, perhaps the work of Molev, such as Molev - Gelfand–Tsetlin bases for classical Lie algebras, might be helpful.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 26 '18 at 15:58









        LSpice

        2,90322628




        2,90322628










        answered Nov 14 '18 at 4:40









        Timothy ChowTimothy Chow

        35.3k11184317




        35.3k11184317



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315268%2fis-there-an-accessible-exposition-of-gelfand-tsetlin-theory%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

            ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế

            ⃀⃉⃄⃅⃍,⃂₼₡₰⃉₡₿₢⃉₣⃄₯⃊₮₼₹₱₦₷⃄₪₼₶₳₫⃍₽ ₫₪₦⃆₠₥⃁₸₴₷⃊₹⃅⃈₰⃁₫ ⃎⃍₩₣₷ ₻₮⃊⃀⃄⃉₯,⃏⃊,₦⃅₪,₼⃀₾₧₷₾ ₻ ₸₡ ₾,₭⃈₴⃋,€⃁,₩ ₺⃌⃍⃁₱⃋⃋₨⃊⃁⃃₼,⃎,₱⃍₲₶₡ ⃍⃅₶₨₭,⃉₭₾₡₻⃀ ₼₹⃅₹,₻₭ ⃌