What are the automorphism groups of direct products of dihedral group D4
$begingroup$
What is the automorphism group of direct sum of dihedral group of order $8$, $D_4$?
For example, $mathrmAut(D_4)$ is isomorphic to $D_4$. How about $mathrmAut(D_4times D_4)$, $mathrmAut(D_4times D_4times D_4)$, and $mathrmAut(D_4times D_4 times D_4 times D_4)$?
gr.group-theory finite-groups automorphism-groups
$endgroup$
add a comment |
$begingroup$
What is the automorphism group of direct sum of dihedral group of order $8$, $D_4$?
For example, $mathrmAut(D_4)$ is isomorphic to $D_4$. How about $mathrmAut(D_4times D_4)$, $mathrmAut(D_4times D_4times D_4)$, and $mathrmAut(D_4times D_4 times D_4 times D_4)$?
gr.group-theory finite-groups automorphism-groups
$endgroup$
$begingroup$
Is $D_4$ the dihedral group of order $8$?
$endgroup$
– LSpice
Aug 26 '18 at 23:47
$begingroup$
@LSpice Yes it is.
$endgroup$
– Sirui Lu
Aug 26 '18 at 23:47
add a comment |
$begingroup$
What is the automorphism group of direct sum of dihedral group of order $8$, $D_4$?
For example, $mathrmAut(D_4)$ is isomorphic to $D_4$. How about $mathrmAut(D_4times D_4)$, $mathrmAut(D_4times D_4times D_4)$, and $mathrmAut(D_4times D_4 times D_4 times D_4)$?
gr.group-theory finite-groups automorphism-groups
$endgroup$
What is the automorphism group of direct sum of dihedral group of order $8$, $D_4$?
For example, $mathrmAut(D_4)$ is isomorphic to $D_4$. How about $mathrmAut(D_4times D_4)$, $mathrmAut(D_4times D_4times D_4)$, and $mathrmAut(D_4times D_4 times D_4 times D_4)$?
gr.group-theory finite-groups automorphism-groups
gr.group-theory finite-groups automorphism-groups
edited Aug 27 '18 at 3:08
Martin Sleziak
2,98532128
2,98532128
asked Aug 26 '18 at 22:43
Sirui LuSirui Lu
412
412
$begingroup$
Is $D_4$ the dihedral group of order $8$?
$endgroup$
– LSpice
Aug 26 '18 at 23:47
$begingroup$
@LSpice Yes it is.
$endgroup$
– Sirui Lu
Aug 26 '18 at 23:47
add a comment |
$begingroup$
Is $D_4$ the dihedral group of order $8$?
$endgroup$
– LSpice
Aug 26 '18 at 23:47
$begingroup$
@LSpice Yes it is.
$endgroup$
– Sirui Lu
Aug 26 '18 at 23:47
$begingroup$
Is $D_4$ the dihedral group of order $8$?
$endgroup$
– LSpice
Aug 26 '18 at 23:47
$begingroup$
Is $D_4$ the dihedral group of order $8$?
$endgroup$
– LSpice
Aug 26 '18 at 23:47
$begingroup$
@LSpice Yes it is.
$endgroup$
– Sirui Lu
Aug 26 '18 at 23:47
$begingroup$
@LSpice Yes it is.
$endgroup$
– Sirui Lu
Aug 26 '18 at 23:47
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The following papers are relevant:
[1] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, Automorphisms of
direct products of finite groups, Arch. Math. 86, 481 – 489 (2006).
[2] J. N. S. Bidwell, Automorphisms of direct products of finite groups II, Arch. Math. 91, 111–121 (2008).
For your question you want to look at [2]. This paper describes the automorphism group of $G = H^n = H times cdots times H$ where $H$ is an indecomposable non-abelian group. In this case $operatornameAut(G)$ has a normal subgroup $mathscrA$ isomorphic to the group formed by the matrices $$left beginpmatrix alpha_11 & cdots & alpha_1n \ vdots & ddots & vdots \ alpha_n1 & cdots & alpha_nnendpmatrix : beginalignalpha_ii &in operatornameAut(H) text for all 1 leq i leq n \ alpha_ij &in operatornameHom(H, Z(H)) text for all i $neq$ j endalignright.$$
(The group operation is matrix multiplication, with multiplication defined by composition and addition defined by $(alpha+beta)(x) = alpha(x)beta(x)$.)
Theorem 3.1 of [2] states that $operatornameAut(G) = mathscrA rtimes S_n$, where $S_n$ is the symmetric group acting on $G$ by permuting the direct factors. Thus $|operatornameAut(G)| = |operatornameAut(H)|^n |operatornameHom(H, Z(H))|^n^2-n n!$
In your case $operatornameAut(H) cong D_4$ and $operatornameHom(H, Z(H)) cong C_2 times C_2$, so $|operatornameAut(G)| = 2^2n^2+n n!$.
$endgroup$
$begingroup$
Thanks for your answer! Can we get things beyond order, like generators of G?
$endgroup$
– Sirui Lu
Aug 27 '18 at 2:39
1
$begingroup$
@SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
$endgroup$
– Mikko Korhonen
Aug 27 '18 at 2:53
add a comment |
$begingroup$
Mikko Korhonen has already given a good answer. -- But as you asked for
explicit generators for the automorphism groups -- you can obtain such
by GAP as follows (you see that 4 generators suffice):
gap> D4 := Group((1,2,3,4),(1,3));
Group([ (1,2,3,4), (1,3) ])
gap> A1 := AutomorphismGroup(D4);
<group of size 8 with 3 generators>
gap> SmallGeneratingSet(A1);
[ [ (2,4), (1,4)(2,3) ] -> [ (1,2)(3,4), (2,4) ],
[ (2,4), (1,4)(2,3) ] -> [ (2,4), (1,2)(3,4) ] ]
gap> A2 := AutomorphismGroup(DirectProduct(D4,D4));
<group of size 2048 with 11 generators>
gap> SmallGeneratingSet(A2);
[ [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,2)(3,4)(5,7)(6,8), (1,4)(2,3), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,4)(2,3), (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(6,8),
(5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (2,4)(5,7)(6,8) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(5,6)(7,8), (2,4)(5,7)(6,8),
(1,2)(3,4), (1,4)(2,3)(5,7)(6,8), (1,3)(2,4)(6,8) ] ]
gap> A3 := AutomorphismGroup(DirectProduct(D4,D4,D4));
<group of size 12582912 with 23 generators>
gap> SmallGeneratingSet(A3);
[ [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,6)(7,8)(10,12), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,4)(2,3)(6,8)(9,12)(10,11),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,4)(2,3)(5,6)(7,8)(9,12,11,10) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,8)(6,7)(9,10)(11,12), (1,2,3,4)(6,8)(9,11),
(2,4)(6,8)(9,10)(11,12), (1,2)(3,4)(5,7)(10,12), (2,4)(5,8)(6,7)(9,11),
(2,4)(5,7)(9,10,11,12) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,8)(6,7)(9,11), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(2,4)(5,8)(6,7)(9,10)(11,12), (1,4)(2,3)(6,8)(9,10)(11,12),
(1,2)(3,4)(5,8)(6,7)(10,12), (1,2,3,4)(5,6)(7,8)(9,12)(10,11) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,7)(9,10)(11,12), (1,4,3,2)(5,8)(6,7)(10,12),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,6)(7,8)(9,11),
(1,3)(5,7)(9,11), (1,3)(5,6)(7,8)(9,12,11,10) ] ]
gap> A4 := AutomorphismGroup(DirectProduct(D4,D4,D4,D4));
<group of size 1649267441664 with 40 generators>
gap> SmallGeneratingSet(A4);
[ [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (2,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16),
(5,6)(7,8)(9,12)(10,11)(13,15), (1,2)(3,4)(6,8)(9,11)(10,12)(13,14)(15,
16), (1,3)(5,8)(6,7)(9,11)(13,15)(14,16), (2,4)(6,8)(14,16),
(1,3)(2,4)(5,6)(7,8)(10,12)(13,16)(14,15),
(2,4)(5,8)(6,7)(13,14)(15,16), (1,3)(5,7)(6,8)(9,10)(11,12)(14,16) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16), (1,3)(5,7)(9,10)(11,12),
(1,3)(2,4)(5,6)(7,8)(10,12)(14,16),
(1,2)(3,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15),
(6,8)(10,12)(13,14)(15,16), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,15)(14,
16), (5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(2,4)(6,8)(9,11)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,14)(15,16),
(5,6)(7,8)(9,11)(13,14)(15,16), (2,4)(6,8)(9,10)(11,12)(13,15)(14,16),
(1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(14,16), (1,4)(2,3)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,15),
(1,4)(2,3)(5,8)(6,7)(9,10)(11,12),
(1,2)(3,4)(5,7)(6,8)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(1,2)(3,4)(5,8)(6,7)(9,10)(11,12), (1,3)(5,7)(9,11)(10,12)(14,16),
(1,3)(2,4)(5,8)(6,7)(9,11)(13,16)(14,15),
(1,2)(3,4)(5,7)(9,11)(10,12)(13,16)(14,15),
(1,3)(5,6)(7,8)(10,12)(13,15)(14,16), (2,4)(5,8)(6,7)(13,14)(15,16),
(1,4)(2,3)(9,12)(10,11)(13,16)(14,15) ] ]
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f309188%2fwhat-are-the-automorphism-groups-of-direct-products-of-dihedral-group-d4%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The following papers are relevant:
[1] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, Automorphisms of
direct products of finite groups, Arch. Math. 86, 481 – 489 (2006).
[2] J. N. S. Bidwell, Automorphisms of direct products of finite groups II, Arch. Math. 91, 111–121 (2008).
For your question you want to look at [2]. This paper describes the automorphism group of $G = H^n = H times cdots times H$ where $H$ is an indecomposable non-abelian group. In this case $operatornameAut(G)$ has a normal subgroup $mathscrA$ isomorphic to the group formed by the matrices $$left beginpmatrix alpha_11 & cdots & alpha_1n \ vdots & ddots & vdots \ alpha_n1 & cdots & alpha_nnendpmatrix : beginalignalpha_ii &in operatornameAut(H) text for all 1 leq i leq n \ alpha_ij &in operatornameHom(H, Z(H)) text for all i $neq$ j endalignright.$$
(The group operation is matrix multiplication, with multiplication defined by composition and addition defined by $(alpha+beta)(x) = alpha(x)beta(x)$.)
Theorem 3.1 of [2] states that $operatornameAut(G) = mathscrA rtimes S_n$, where $S_n$ is the symmetric group acting on $G$ by permuting the direct factors. Thus $|operatornameAut(G)| = |operatornameAut(H)|^n |operatornameHom(H, Z(H))|^n^2-n n!$
In your case $operatornameAut(H) cong D_4$ and $operatornameHom(H, Z(H)) cong C_2 times C_2$, so $|operatornameAut(G)| = 2^2n^2+n n!$.
$endgroup$
$begingroup$
Thanks for your answer! Can we get things beyond order, like generators of G?
$endgroup$
– Sirui Lu
Aug 27 '18 at 2:39
1
$begingroup$
@SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
$endgroup$
– Mikko Korhonen
Aug 27 '18 at 2:53
add a comment |
$begingroup$
The following papers are relevant:
[1] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, Automorphisms of
direct products of finite groups, Arch. Math. 86, 481 – 489 (2006).
[2] J. N. S. Bidwell, Automorphisms of direct products of finite groups II, Arch. Math. 91, 111–121 (2008).
For your question you want to look at [2]. This paper describes the automorphism group of $G = H^n = H times cdots times H$ where $H$ is an indecomposable non-abelian group. In this case $operatornameAut(G)$ has a normal subgroup $mathscrA$ isomorphic to the group formed by the matrices $$left beginpmatrix alpha_11 & cdots & alpha_1n \ vdots & ddots & vdots \ alpha_n1 & cdots & alpha_nnendpmatrix : beginalignalpha_ii &in operatornameAut(H) text for all 1 leq i leq n \ alpha_ij &in operatornameHom(H, Z(H)) text for all i $neq$ j endalignright.$$
(The group operation is matrix multiplication, with multiplication defined by composition and addition defined by $(alpha+beta)(x) = alpha(x)beta(x)$.)
Theorem 3.1 of [2] states that $operatornameAut(G) = mathscrA rtimes S_n$, where $S_n$ is the symmetric group acting on $G$ by permuting the direct factors. Thus $|operatornameAut(G)| = |operatornameAut(H)|^n |operatornameHom(H, Z(H))|^n^2-n n!$
In your case $operatornameAut(H) cong D_4$ and $operatornameHom(H, Z(H)) cong C_2 times C_2$, so $|operatornameAut(G)| = 2^2n^2+n n!$.
$endgroup$
$begingroup$
Thanks for your answer! Can we get things beyond order, like generators of G?
$endgroup$
– Sirui Lu
Aug 27 '18 at 2:39
1
$begingroup$
@SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
$endgroup$
– Mikko Korhonen
Aug 27 '18 at 2:53
add a comment |
$begingroup$
The following papers are relevant:
[1] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, Automorphisms of
direct products of finite groups, Arch. Math. 86, 481 – 489 (2006).
[2] J. N. S. Bidwell, Automorphisms of direct products of finite groups II, Arch. Math. 91, 111–121 (2008).
For your question you want to look at [2]. This paper describes the automorphism group of $G = H^n = H times cdots times H$ where $H$ is an indecomposable non-abelian group. In this case $operatornameAut(G)$ has a normal subgroup $mathscrA$ isomorphic to the group formed by the matrices $$left beginpmatrix alpha_11 & cdots & alpha_1n \ vdots & ddots & vdots \ alpha_n1 & cdots & alpha_nnendpmatrix : beginalignalpha_ii &in operatornameAut(H) text for all 1 leq i leq n \ alpha_ij &in operatornameHom(H, Z(H)) text for all i $neq$ j endalignright.$$
(The group operation is matrix multiplication, with multiplication defined by composition and addition defined by $(alpha+beta)(x) = alpha(x)beta(x)$.)
Theorem 3.1 of [2] states that $operatornameAut(G) = mathscrA rtimes S_n$, where $S_n$ is the symmetric group acting on $G$ by permuting the direct factors. Thus $|operatornameAut(G)| = |operatornameAut(H)|^n |operatornameHom(H, Z(H))|^n^2-n n!$
In your case $operatornameAut(H) cong D_4$ and $operatornameHom(H, Z(H)) cong C_2 times C_2$, so $|operatornameAut(G)| = 2^2n^2+n n!$.
$endgroup$
The following papers are relevant:
[1] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, Automorphisms of
direct products of finite groups, Arch. Math. 86, 481 – 489 (2006).
[2] J. N. S. Bidwell, Automorphisms of direct products of finite groups II, Arch. Math. 91, 111–121 (2008).
For your question you want to look at [2]. This paper describes the automorphism group of $G = H^n = H times cdots times H$ where $H$ is an indecomposable non-abelian group. In this case $operatornameAut(G)$ has a normal subgroup $mathscrA$ isomorphic to the group formed by the matrices $$left beginpmatrix alpha_11 & cdots & alpha_1n \ vdots & ddots & vdots \ alpha_n1 & cdots & alpha_nnendpmatrix : beginalignalpha_ii &in operatornameAut(H) text for all 1 leq i leq n \ alpha_ij &in operatornameHom(H, Z(H)) text for all i $neq$ j endalignright.$$
(The group operation is matrix multiplication, with multiplication defined by composition and addition defined by $(alpha+beta)(x) = alpha(x)beta(x)$.)
Theorem 3.1 of [2] states that $operatornameAut(G) = mathscrA rtimes S_n$, where $S_n$ is the symmetric group acting on $G$ by permuting the direct factors. Thus $|operatornameAut(G)| = |operatornameAut(H)|^n |operatornameHom(H, Z(H))|^n^2-n n!$
In your case $operatornameAut(H) cong D_4$ and $operatornameHom(H, Z(H)) cong C_2 times C_2$, so $|operatornameAut(G)| = 2^2n^2+n n!$.
edited Aug 27 '18 at 3:18
Martin Sleziak
2,98532128
2,98532128
answered Aug 27 '18 at 2:36
Mikko KorhonenMikko Korhonen
1,070914
1,070914
$begingroup$
Thanks for your answer! Can we get things beyond order, like generators of G?
$endgroup$
– Sirui Lu
Aug 27 '18 at 2:39
1
$begingroup$
@SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
$endgroup$
– Mikko Korhonen
Aug 27 '18 at 2:53
add a comment |
$begingroup$
Thanks for your answer! Can we get things beyond order, like generators of G?
$endgroup$
– Sirui Lu
Aug 27 '18 at 2:39
1
$begingroup$
@SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
$endgroup$
– Mikko Korhonen
Aug 27 '18 at 2:53
$begingroup$
Thanks for your answer! Can we get things beyond order, like generators of G?
$endgroup$
– Sirui Lu
Aug 27 '18 at 2:39
$begingroup$
Thanks for your answer! Can we get things beyond order, like generators of G?
$endgroup$
– Sirui Lu
Aug 27 '18 at 2:39
1
1
$begingroup$
@SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
$endgroup$
– Mikko Korhonen
Aug 27 '18 at 2:53
$begingroup$
@SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
$endgroup$
– Mikko Korhonen
Aug 27 '18 at 2:53
add a comment |
$begingroup$
Mikko Korhonen has already given a good answer. -- But as you asked for
explicit generators for the automorphism groups -- you can obtain such
by GAP as follows (you see that 4 generators suffice):
gap> D4 := Group((1,2,3,4),(1,3));
Group([ (1,2,3,4), (1,3) ])
gap> A1 := AutomorphismGroup(D4);
<group of size 8 with 3 generators>
gap> SmallGeneratingSet(A1);
[ [ (2,4), (1,4)(2,3) ] -> [ (1,2)(3,4), (2,4) ],
[ (2,4), (1,4)(2,3) ] -> [ (2,4), (1,2)(3,4) ] ]
gap> A2 := AutomorphismGroup(DirectProduct(D4,D4));
<group of size 2048 with 11 generators>
gap> SmallGeneratingSet(A2);
[ [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,2)(3,4)(5,7)(6,8), (1,4)(2,3), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,4)(2,3), (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(6,8),
(5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (2,4)(5,7)(6,8) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(5,6)(7,8), (2,4)(5,7)(6,8),
(1,2)(3,4), (1,4)(2,3)(5,7)(6,8), (1,3)(2,4)(6,8) ] ]
gap> A3 := AutomorphismGroup(DirectProduct(D4,D4,D4));
<group of size 12582912 with 23 generators>
gap> SmallGeneratingSet(A3);
[ [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,6)(7,8)(10,12), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,4)(2,3)(6,8)(9,12)(10,11),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,4)(2,3)(5,6)(7,8)(9,12,11,10) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,8)(6,7)(9,10)(11,12), (1,2,3,4)(6,8)(9,11),
(2,4)(6,8)(9,10)(11,12), (1,2)(3,4)(5,7)(10,12), (2,4)(5,8)(6,7)(9,11),
(2,4)(5,7)(9,10,11,12) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,8)(6,7)(9,11), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(2,4)(5,8)(6,7)(9,10)(11,12), (1,4)(2,3)(6,8)(9,10)(11,12),
(1,2)(3,4)(5,8)(6,7)(10,12), (1,2,3,4)(5,6)(7,8)(9,12)(10,11) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,7)(9,10)(11,12), (1,4,3,2)(5,8)(6,7)(10,12),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,6)(7,8)(9,11),
(1,3)(5,7)(9,11), (1,3)(5,6)(7,8)(9,12,11,10) ] ]
gap> A4 := AutomorphismGroup(DirectProduct(D4,D4,D4,D4));
<group of size 1649267441664 with 40 generators>
gap> SmallGeneratingSet(A4);
[ [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (2,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16),
(5,6)(7,8)(9,12)(10,11)(13,15), (1,2)(3,4)(6,8)(9,11)(10,12)(13,14)(15,
16), (1,3)(5,8)(6,7)(9,11)(13,15)(14,16), (2,4)(6,8)(14,16),
(1,3)(2,4)(5,6)(7,8)(10,12)(13,16)(14,15),
(2,4)(5,8)(6,7)(13,14)(15,16), (1,3)(5,7)(6,8)(9,10)(11,12)(14,16) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16), (1,3)(5,7)(9,10)(11,12),
(1,3)(2,4)(5,6)(7,8)(10,12)(14,16),
(1,2)(3,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15),
(6,8)(10,12)(13,14)(15,16), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,15)(14,
16), (5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(2,4)(6,8)(9,11)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,14)(15,16),
(5,6)(7,8)(9,11)(13,14)(15,16), (2,4)(6,8)(9,10)(11,12)(13,15)(14,16),
(1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(14,16), (1,4)(2,3)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,15),
(1,4)(2,3)(5,8)(6,7)(9,10)(11,12),
(1,2)(3,4)(5,7)(6,8)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(1,2)(3,4)(5,8)(6,7)(9,10)(11,12), (1,3)(5,7)(9,11)(10,12)(14,16),
(1,3)(2,4)(5,8)(6,7)(9,11)(13,16)(14,15),
(1,2)(3,4)(5,7)(9,11)(10,12)(13,16)(14,15),
(1,3)(5,6)(7,8)(10,12)(13,15)(14,16), (2,4)(5,8)(6,7)(13,14)(15,16),
(1,4)(2,3)(9,12)(10,11)(13,16)(14,15) ] ]
$endgroup$
add a comment |
$begingroup$
Mikko Korhonen has already given a good answer. -- But as you asked for
explicit generators for the automorphism groups -- you can obtain such
by GAP as follows (you see that 4 generators suffice):
gap> D4 := Group((1,2,3,4),(1,3));
Group([ (1,2,3,4), (1,3) ])
gap> A1 := AutomorphismGroup(D4);
<group of size 8 with 3 generators>
gap> SmallGeneratingSet(A1);
[ [ (2,4), (1,4)(2,3) ] -> [ (1,2)(3,4), (2,4) ],
[ (2,4), (1,4)(2,3) ] -> [ (2,4), (1,2)(3,4) ] ]
gap> A2 := AutomorphismGroup(DirectProduct(D4,D4));
<group of size 2048 with 11 generators>
gap> SmallGeneratingSet(A2);
[ [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,2)(3,4)(5,7)(6,8), (1,4)(2,3), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,4)(2,3), (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(6,8),
(5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (2,4)(5,7)(6,8) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(5,6)(7,8), (2,4)(5,7)(6,8),
(1,2)(3,4), (1,4)(2,3)(5,7)(6,8), (1,3)(2,4)(6,8) ] ]
gap> A3 := AutomorphismGroup(DirectProduct(D4,D4,D4));
<group of size 12582912 with 23 generators>
gap> SmallGeneratingSet(A3);
[ [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,6)(7,8)(10,12), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,4)(2,3)(6,8)(9,12)(10,11),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,4)(2,3)(5,6)(7,8)(9,12,11,10) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,8)(6,7)(9,10)(11,12), (1,2,3,4)(6,8)(9,11),
(2,4)(6,8)(9,10)(11,12), (1,2)(3,4)(5,7)(10,12), (2,4)(5,8)(6,7)(9,11),
(2,4)(5,7)(9,10,11,12) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,8)(6,7)(9,11), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(2,4)(5,8)(6,7)(9,10)(11,12), (1,4)(2,3)(6,8)(9,10)(11,12),
(1,2)(3,4)(5,8)(6,7)(10,12), (1,2,3,4)(5,6)(7,8)(9,12)(10,11) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,7)(9,10)(11,12), (1,4,3,2)(5,8)(6,7)(10,12),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,6)(7,8)(9,11),
(1,3)(5,7)(9,11), (1,3)(5,6)(7,8)(9,12,11,10) ] ]
gap> A4 := AutomorphismGroup(DirectProduct(D4,D4,D4,D4));
<group of size 1649267441664 with 40 generators>
gap> SmallGeneratingSet(A4);
[ [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (2,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16),
(5,6)(7,8)(9,12)(10,11)(13,15), (1,2)(3,4)(6,8)(9,11)(10,12)(13,14)(15,
16), (1,3)(5,8)(6,7)(9,11)(13,15)(14,16), (2,4)(6,8)(14,16),
(1,3)(2,4)(5,6)(7,8)(10,12)(13,16)(14,15),
(2,4)(5,8)(6,7)(13,14)(15,16), (1,3)(5,7)(6,8)(9,10)(11,12)(14,16) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16), (1,3)(5,7)(9,10)(11,12),
(1,3)(2,4)(5,6)(7,8)(10,12)(14,16),
(1,2)(3,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15),
(6,8)(10,12)(13,14)(15,16), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,15)(14,
16), (5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(2,4)(6,8)(9,11)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,14)(15,16),
(5,6)(7,8)(9,11)(13,14)(15,16), (2,4)(6,8)(9,10)(11,12)(13,15)(14,16),
(1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(14,16), (1,4)(2,3)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,15),
(1,4)(2,3)(5,8)(6,7)(9,10)(11,12),
(1,2)(3,4)(5,7)(6,8)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(1,2)(3,4)(5,8)(6,7)(9,10)(11,12), (1,3)(5,7)(9,11)(10,12)(14,16),
(1,3)(2,4)(5,8)(6,7)(9,11)(13,16)(14,15),
(1,2)(3,4)(5,7)(9,11)(10,12)(13,16)(14,15),
(1,3)(5,6)(7,8)(10,12)(13,15)(14,16), (2,4)(5,8)(6,7)(13,14)(15,16),
(1,4)(2,3)(9,12)(10,11)(13,16)(14,15) ] ]
$endgroup$
add a comment |
$begingroup$
Mikko Korhonen has already given a good answer. -- But as you asked for
explicit generators for the automorphism groups -- you can obtain such
by GAP as follows (you see that 4 generators suffice):
gap> D4 := Group((1,2,3,4),(1,3));
Group([ (1,2,3,4), (1,3) ])
gap> A1 := AutomorphismGroup(D4);
<group of size 8 with 3 generators>
gap> SmallGeneratingSet(A1);
[ [ (2,4), (1,4)(2,3) ] -> [ (1,2)(3,4), (2,4) ],
[ (2,4), (1,4)(2,3) ] -> [ (2,4), (1,2)(3,4) ] ]
gap> A2 := AutomorphismGroup(DirectProduct(D4,D4));
<group of size 2048 with 11 generators>
gap> SmallGeneratingSet(A2);
[ [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,2)(3,4)(5,7)(6,8), (1,4)(2,3), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,4)(2,3), (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(6,8),
(5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (2,4)(5,7)(6,8) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(5,6)(7,8), (2,4)(5,7)(6,8),
(1,2)(3,4), (1,4)(2,3)(5,7)(6,8), (1,3)(2,4)(6,8) ] ]
gap> A3 := AutomorphismGroup(DirectProduct(D4,D4,D4));
<group of size 12582912 with 23 generators>
gap> SmallGeneratingSet(A3);
[ [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,6)(7,8)(10,12), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,4)(2,3)(6,8)(9,12)(10,11),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,4)(2,3)(5,6)(7,8)(9,12,11,10) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,8)(6,7)(9,10)(11,12), (1,2,3,4)(6,8)(9,11),
(2,4)(6,8)(9,10)(11,12), (1,2)(3,4)(5,7)(10,12), (2,4)(5,8)(6,7)(9,11),
(2,4)(5,7)(9,10,11,12) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,8)(6,7)(9,11), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(2,4)(5,8)(6,7)(9,10)(11,12), (1,4)(2,3)(6,8)(9,10)(11,12),
(1,2)(3,4)(5,8)(6,7)(10,12), (1,2,3,4)(5,6)(7,8)(9,12)(10,11) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,7)(9,10)(11,12), (1,4,3,2)(5,8)(6,7)(10,12),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,6)(7,8)(9,11),
(1,3)(5,7)(9,11), (1,3)(5,6)(7,8)(9,12,11,10) ] ]
gap> A4 := AutomorphismGroup(DirectProduct(D4,D4,D4,D4));
<group of size 1649267441664 with 40 generators>
gap> SmallGeneratingSet(A4);
[ [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (2,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16),
(5,6)(7,8)(9,12)(10,11)(13,15), (1,2)(3,4)(6,8)(9,11)(10,12)(13,14)(15,
16), (1,3)(5,8)(6,7)(9,11)(13,15)(14,16), (2,4)(6,8)(14,16),
(1,3)(2,4)(5,6)(7,8)(10,12)(13,16)(14,15),
(2,4)(5,8)(6,7)(13,14)(15,16), (1,3)(5,7)(6,8)(9,10)(11,12)(14,16) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16), (1,3)(5,7)(9,10)(11,12),
(1,3)(2,4)(5,6)(7,8)(10,12)(14,16),
(1,2)(3,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15),
(6,8)(10,12)(13,14)(15,16), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,15)(14,
16), (5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(2,4)(6,8)(9,11)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,14)(15,16),
(5,6)(7,8)(9,11)(13,14)(15,16), (2,4)(6,8)(9,10)(11,12)(13,15)(14,16),
(1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(14,16), (1,4)(2,3)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,15),
(1,4)(2,3)(5,8)(6,7)(9,10)(11,12),
(1,2)(3,4)(5,7)(6,8)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(1,2)(3,4)(5,8)(6,7)(9,10)(11,12), (1,3)(5,7)(9,11)(10,12)(14,16),
(1,3)(2,4)(5,8)(6,7)(9,11)(13,16)(14,15),
(1,2)(3,4)(5,7)(9,11)(10,12)(13,16)(14,15),
(1,3)(5,6)(7,8)(10,12)(13,15)(14,16), (2,4)(5,8)(6,7)(13,14)(15,16),
(1,4)(2,3)(9,12)(10,11)(13,16)(14,15) ] ]
$endgroup$
Mikko Korhonen has already given a good answer. -- But as you asked for
explicit generators for the automorphism groups -- you can obtain such
by GAP as follows (you see that 4 generators suffice):
gap> D4 := Group((1,2,3,4),(1,3));
Group([ (1,2,3,4), (1,3) ])
gap> A1 := AutomorphismGroup(D4);
<group of size 8 with 3 generators>
gap> SmallGeneratingSet(A1);
[ [ (2,4), (1,4)(2,3) ] -> [ (1,2)(3,4), (2,4) ],
[ (2,4), (1,4)(2,3) ] -> [ (2,4), (1,2)(3,4) ] ]
gap> A2 := AutomorphismGroup(DirectProduct(D4,D4));
<group of size 2048 with 11 generators>
gap> SmallGeneratingSet(A2);
[ [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,2)(3,4)(5,7)(6,8), (1,4)(2,3), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,4)(2,3), (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(6,8),
(5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (2,4)(5,7)(6,8) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(5,6)(7,8), (2,4)(5,7)(6,8),
(1,2)(3,4), (1,4)(2,3)(5,7)(6,8), (1,3)(2,4)(6,8) ] ]
gap> A3 := AutomorphismGroup(DirectProduct(D4,D4,D4));
<group of size 12582912 with 23 generators>
gap> SmallGeneratingSet(A3);
[ [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,6)(7,8)(10,12), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,4)(2,3)(6,8)(9,12)(10,11),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,4)(2,3)(5,6)(7,8)(9,12,11,10) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,8)(6,7)(9,10)(11,12), (1,2,3,4)(6,8)(9,11),
(2,4)(6,8)(9,10)(11,12), (1,2)(3,4)(5,7)(10,12), (2,4)(5,8)(6,7)(9,11),
(2,4)(5,7)(9,10,11,12) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,8)(6,7)(9,11), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(2,4)(5,8)(6,7)(9,10)(11,12), (1,4)(2,3)(6,8)(9,10)(11,12),
(1,2)(3,4)(5,8)(6,7)(10,12), (1,2,3,4)(5,6)(7,8)(9,12)(10,11) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,7)(9,10)(11,12), (1,4,3,2)(5,8)(6,7)(10,12),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,6)(7,8)(9,11),
(1,3)(5,7)(9,11), (1,3)(5,6)(7,8)(9,12,11,10) ] ]
gap> A4 := AutomorphismGroup(DirectProduct(D4,D4,D4,D4));
<group of size 1649267441664 with 40 generators>
gap> SmallGeneratingSet(A4);
[ [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (2,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16),
(5,6)(7,8)(9,12)(10,11)(13,15), (1,2)(3,4)(6,8)(9,11)(10,12)(13,14)(15,
16), (1,3)(5,8)(6,7)(9,11)(13,15)(14,16), (2,4)(6,8)(14,16),
(1,3)(2,4)(5,6)(7,8)(10,12)(13,16)(14,15),
(2,4)(5,8)(6,7)(13,14)(15,16), (1,3)(5,7)(6,8)(9,10)(11,12)(14,16) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16), (1,3)(5,7)(9,10)(11,12),
(1,3)(2,4)(5,6)(7,8)(10,12)(14,16),
(1,2)(3,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15),
(6,8)(10,12)(13,14)(15,16), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,15)(14,
16), (5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(2,4)(6,8)(9,11)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,14)(15,16),
(5,6)(7,8)(9,11)(13,14)(15,16), (2,4)(6,8)(9,10)(11,12)(13,15)(14,16),
(1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(14,16), (1,4)(2,3)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,15),
(1,4)(2,3)(5,8)(6,7)(9,10)(11,12),
(1,2)(3,4)(5,7)(6,8)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(1,2)(3,4)(5,8)(6,7)(9,10)(11,12), (1,3)(5,7)(9,11)(10,12)(14,16),
(1,3)(2,4)(5,8)(6,7)(9,11)(13,16)(14,15),
(1,2)(3,4)(5,7)(9,11)(10,12)(13,16)(14,15),
(1,3)(5,6)(7,8)(10,12)(13,15)(14,16), (2,4)(5,8)(6,7)(13,14)(15,16),
(1,4)(2,3)(9,12)(10,11)(13,16)(14,15) ] ]
answered Sep 15 '18 at 15:08
Stefan KohlStefan Kohl
12.5k956112
12.5k956112
add a comment |
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f309188%2fwhat-are-the-automorphism-groups-of-direct-products-of-dihedral-group-d4%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is $D_4$ the dihedral group of order $8$?
$endgroup$
– LSpice
Aug 26 '18 at 23:47
$begingroup$
@LSpice Yes it is.
$endgroup$
– Sirui Lu
Aug 26 '18 at 23:47