What are the automorphism groups of direct products of dihedral group D4










7












$begingroup$


What is the automorphism group of direct sum of dihedral group of order $8$, $D_4$?



For example, $mathrmAut(D_4)$ is isomorphic to $D_4$. How about $mathrmAut(D_4times D_4)$, $mathrmAut(D_4times D_4times D_4)$, and $mathrmAut(D_4times D_4 times D_4 times D_4)$?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Is $D_4$ the dihedral group of order $8$?
    $endgroup$
    – LSpice
    Aug 26 '18 at 23:47










  • $begingroup$
    @LSpice Yes it is.
    $endgroup$
    – Sirui Lu
    Aug 26 '18 at 23:47















7












$begingroup$


What is the automorphism group of direct sum of dihedral group of order $8$, $D_4$?



For example, $mathrmAut(D_4)$ is isomorphic to $D_4$. How about $mathrmAut(D_4times D_4)$, $mathrmAut(D_4times D_4times D_4)$, and $mathrmAut(D_4times D_4 times D_4 times D_4)$?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Is $D_4$ the dihedral group of order $8$?
    $endgroup$
    – LSpice
    Aug 26 '18 at 23:47










  • $begingroup$
    @LSpice Yes it is.
    $endgroup$
    – Sirui Lu
    Aug 26 '18 at 23:47













7












7








7


4



$begingroup$


What is the automorphism group of direct sum of dihedral group of order $8$, $D_4$?



For example, $mathrmAut(D_4)$ is isomorphic to $D_4$. How about $mathrmAut(D_4times D_4)$, $mathrmAut(D_4times D_4times D_4)$, and $mathrmAut(D_4times D_4 times D_4 times D_4)$?










share|cite|improve this question











$endgroup$




What is the automorphism group of direct sum of dihedral group of order $8$, $D_4$?



For example, $mathrmAut(D_4)$ is isomorphic to $D_4$. How about $mathrmAut(D_4times D_4)$, $mathrmAut(D_4times D_4times D_4)$, and $mathrmAut(D_4times D_4 times D_4 times D_4)$?







gr.group-theory finite-groups automorphism-groups






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 27 '18 at 3:08









Martin Sleziak

2,98532128




2,98532128










asked Aug 26 '18 at 22:43









Sirui LuSirui Lu

412




412











  • $begingroup$
    Is $D_4$ the dihedral group of order $8$?
    $endgroup$
    – LSpice
    Aug 26 '18 at 23:47










  • $begingroup$
    @LSpice Yes it is.
    $endgroup$
    – Sirui Lu
    Aug 26 '18 at 23:47
















  • $begingroup$
    Is $D_4$ the dihedral group of order $8$?
    $endgroup$
    – LSpice
    Aug 26 '18 at 23:47










  • $begingroup$
    @LSpice Yes it is.
    $endgroup$
    – Sirui Lu
    Aug 26 '18 at 23:47















$begingroup$
Is $D_4$ the dihedral group of order $8$?
$endgroup$
– LSpice
Aug 26 '18 at 23:47




$begingroup$
Is $D_4$ the dihedral group of order $8$?
$endgroup$
– LSpice
Aug 26 '18 at 23:47












$begingroup$
@LSpice Yes it is.
$endgroup$
– Sirui Lu
Aug 26 '18 at 23:47




$begingroup$
@LSpice Yes it is.
$endgroup$
– Sirui Lu
Aug 26 '18 at 23:47










2 Answers
2






active

oldest

votes


















10












$begingroup$

The following papers are relevant:




[1] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, Automorphisms of
direct products of finite groups, Arch. Math. 86, 481 – 489 (2006).



[2] J. N. S. Bidwell, Automorphisms of direct products of finite groups II, Arch. Math. 91, 111–121 (2008).




For your question you want to look at [2]. This paper describes the automorphism group of $G = H^n = H times cdots times H$ where $H$ is an indecomposable non-abelian group. In this case $operatornameAut(G)$ has a normal subgroup $mathscrA$ isomorphic to the group formed by the matrices $$left beginpmatrix alpha_11 & cdots & alpha_1n \ vdots & ddots & vdots \ alpha_n1 & cdots & alpha_nnendpmatrix : beginalignalpha_ii &in operatornameAut(H) text for all 1 leq i leq n \ alpha_ij &in operatornameHom(H, Z(H)) text for all i $neq$ j endalignright.$$



(The group operation is matrix multiplication, with multiplication defined by composition and addition defined by $(alpha+beta)(x) = alpha(x)beta(x)$.)



Theorem 3.1 of [2] states that $operatornameAut(G) = mathscrA rtimes S_n$, where $S_n$ is the symmetric group acting on $G$ by permuting the direct factors. Thus $|operatornameAut(G)| = |operatornameAut(H)|^n |operatornameHom(H, Z(H))|^n^2-n n!$



In your case $operatornameAut(H) cong D_4$ and $operatornameHom(H, Z(H)) cong C_2 times C_2$, so $|operatornameAut(G)| = 2^2n^2+n n!$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thanks for your answer! Can we get things beyond order, like generators of G?
    $endgroup$
    – Sirui Lu
    Aug 27 '18 at 2:39






  • 1




    $begingroup$
    @SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
    $endgroup$
    – Mikko Korhonen
    Aug 27 '18 at 2:53


















0












$begingroup$

Mikko Korhonen has already given a good answer. -- But as you asked for
explicit generators for the automorphism groups -- you can obtain such
by GAP as follows (you see that 4 generators suffice):



gap> D4 := Group((1,2,3,4),(1,3));
Group([ (1,2,3,4), (1,3) ])
gap> A1 := AutomorphismGroup(D4);
<group of size 8 with 3 generators>
gap> SmallGeneratingSet(A1);
[ [ (2,4), (1,4)(2,3) ] -> [ (1,2)(3,4), (2,4) ],
[ (2,4), (1,4)(2,3) ] -> [ (2,4), (1,2)(3,4) ] ]
gap> A2 := AutomorphismGroup(DirectProduct(D4,D4));
<group of size 2048 with 11 generators>
gap> SmallGeneratingSet(A2);
[ [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,2)(3,4)(5,7)(6,8), (1,4)(2,3), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
(1,4)(2,3), (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,8)(6,7) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(6,8),
(5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (2,4)(5,7)(6,8) ],
[ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
(1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(5,6)(7,8), (2,4)(5,7)(6,8),
(1,2)(3,4), (1,4)(2,3)(5,7)(6,8), (1,3)(2,4)(6,8) ] ]
gap> A3 := AutomorphismGroup(DirectProduct(D4,D4,D4));
<group of size 12582912 with 23 generators>
gap> SmallGeneratingSet(A3);
[ [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,6)(7,8)(10,12), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,4)(2,3)(6,8)(9,12)(10,11),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,4)(2,3)(5,6)(7,8)(9,12,11,10) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,8)(6,7)(9,10)(11,12), (1,2,3,4)(6,8)(9,11),
(2,4)(6,8)(9,10)(11,12), (1,2)(3,4)(5,7)(10,12), (2,4)(5,8)(6,7)(9,11),
(2,4)(5,7)(9,10,11,12) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (2,4)(5,8)(6,7)(9,11), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
(2,4)(5,8)(6,7)(9,10)(11,12), (1,4)(2,3)(6,8)(9,10)(11,12),
(1,2)(3,4)(5,8)(6,7)(10,12), (1,2,3,4)(5,6)(7,8)(9,12)(10,11) ],
[ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
(1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
(1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
[ (1,3)(5,7)(9,10)(11,12), (1,4,3,2)(5,8)(6,7)(10,12),
(1,3)(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,6)(7,8)(9,11),
(1,3)(5,7)(9,11), (1,3)(5,6)(7,8)(9,12,11,10) ] ]
gap> A4 := AutomorphismGroup(DirectProduct(D4,D4,D4,D4));
<group of size 1649267441664 with 40 generators>
gap> SmallGeneratingSet(A4);
[ [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (2,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16),
(5,6)(7,8)(9,12)(10,11)(13,15), (1,2)(3,4)(6,8)(9,11)(10,12)(13,14)(15,
16), (1,3)(5,8)(6,7)(9,11)(13,15)(14,16), (2,4)(6,8)(14,16),
(1,3)(2,4)(5,6)(7,8)(10,12)(13,16)(14,15),
(2,4)(5,8)(6,7)(13,14)(15,16), (1,3)(5,7)(6,8)(9,10)(11,12)(14,16) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16), (1,3)(5,7)(9,10)(11,12),
(1,3)(2,4)(5,6)(7,8)(10,12)(14,16),
(1,2)(3,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15),
(6,8)(10,12)(13,14)(15,16), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,15)(14,
16), (5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(2,4)(6,8)(9,11)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,14)(15,16),
(5,6)(7,8)(9,11)(13,14)(15,16), (2,4)(6,8)(9,10)(11,12)(13,15)(14,16),
(1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(14,16), (1,4)(2,3)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,15),
(1,4)(2,3)(5,8)(6,7)(9,10)(11,12),
(1,2)(3,4)(5,7)(6,8)(10,12)(13,16)(14,15) ],
[ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
(5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
(1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
[ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
(1,2)(3,4)(5,8)(6,7)(9,10)(11,12), (1,3)(5,7)(9,11)(10,12)(14,16),
(1,3)(2,4)(5,8)(6,7)(9,11)(13,16)(14,15),
(1,2)(3,4)(5,7)(9,11)(10,12)(13,16)(14,15),
(1,3)(5,6)(7,8)(10,12)(13,15)(14,16), (2,4)(5,8)(6,7)(13,14)(15,16),
(1,4)(2,3)(9,12)(10,11)(13,16)(14,15) ] ]





share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f309188%2fwhat-are-the-automorphism-groups-of-direct-products-of-dihedral-group-d4%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    The following papers are relevant:




    [1] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, Automorphisms of
    direct products of finite groups, Arch. Math. 86, 481 – 489 (2006).



    [2] J. N. S. Bidwell, Automorphisms of direct products of finite groups II, Arch. Math. 91, 111–121 (2008).




    For your question you want to look at [2]. This paper describes the automorphism group of $G = H^n = H times cdots times H$ where $H$ is an indecomposable non-abelian group. In this case $operatornameAut(G)$ has a normal subgroup $mathscrA$ isomorphic to the group formed by the matrices $$left beginpmatrix alpha_11 & cdots & alpha_1n \ vdots & ddots & vdots \ alpha_n1 & cdots & alpha_nnendpmatrix : beginalignalpha_ii &in operatornameAut(H) text for all 1 leq i leq n \ alpha_ij &in operatornameHom(H, Z(H)) text for all i $neq$ j endalignright.$$



    (The group operation is matrix multiplication, with multiplication defined by composition and addition defined by $(alpha+beta)(x) = alpha(x)beta(x)$.)



    Theorem 3.1 of [2] states that $operatornameAut(G) = mathscrA rtimes S_n$, where $S_n$ is the symmetric group acting on $G$ by permuting the direct factors. Thus $|operatornameAut(G)| = |operatornameAut(H)|^n |operatornameHom(H, Z(H))|^n^2-n n!$



    In your case $operatornameAut(H) cong D_4$ and $operatornameHom(H, Z(H)) cong C_2 times C_2$, so $|operatornameAut(G)| = 2^2n^2+n n!$.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Thanks for your answer! Can we get things beyond order, like generators of G?
      $endgroup$
      – Sirui Lu
      Aug 27 '18 at 2:39






    • 1




      $begingroup$
      @SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
      $endgroup$
      – Mikko Korhonen
      Aug 27 '18 at 2:53















    10












    $begingroup$

    The following papers are relevant:




    [1] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, Automorphisms of
    direct products of finite groups, Arch. Math. 86, 481 – 489 (2006).



    [2] J. N. S. Bidwell, Automorphisms of direct products of finite groups II, Arch. Math. 91, 111–121 (2008).




    For your question you want to look at [2]. This paper describes the automorphism group of $G = H^n = H times cdots times H$ where $H$ is an indecomposable non-abelian group. In this case $operatornameAut(G)$ has a normal subgroup $mathscrA$ isomorphic to the group formed by the matrices $$left beginpmatrix alpha_11 & cdots & alpha_1n \ vdots & ddots & vdots \ alpha_n1 & cdots & alpha_nnendpmatrix : beginalignalpha_ii &in operatornameAut(H) text for all 1 leq i leq n \ alpha_ij &in operatornameHom(H, Z(H)) text for all i $neq$ j endalignright.$$



    (The group operation is matrix multiplication, with multiplication defined by composition and addition defined by $(alpha+beta)(x) = alpha(x)beta(x)$.)



    Theorem 3.1 of [2] states that $operatornameAut(G) = mathscrA rtimes S_n$, where $S_n$ is the symmetric group acting on $G$ by permuting the direct factors. Thus $|operatornameAut(G)| = |operatornameAut(H)|^n |operatornameHom(H, Z(H))|^n^2-n n!$



    In your case $operatornameAut(H) cong D_4$ and $operatornameHom(H, Z(H)) cong C_2 times C_2$, so $|operatornameAut(G)| = 2^2n^2+n n!$.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Thanks for your answer! Can we get things beyond order, like generators of G?
      $endgroup$
      – Sirui Lu
      Aug 27 '18 at 2:39






    • 1




      $begingroup$
      @SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
      $endgroup$
      – Mikko Korhonen
      Aug 27 '18 at 2:53













    10












    10








    10





    $begingroup$

    The following papers are relevant:




    [1] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, Automorphisms of
    direct products of finite groups, Arch. Math. 86, 481 – 489 (2006).



    [2] J. N. S. Bidwell, Automorphisms of direct products of finite groups II, Arch. Math. 91, 111–121 (2008).




    For your question you want to look at [2]. This paper describes the automorphism group of $G = H^n = H times cdots times H$ where $H$ is an indecomposable non-abelian group. In this case $operatornameAut(G)$ has a normal subgroup $mathscrA$ isomorphic to the group formed by the matrices $$left beginpmatrix alpha_11 & cdots & alpha_1n \ vdots & ddots & vdots \ alpha_n1 & cdots & alpha_nnendpmatrix : beginalignalpha_ii &in operatornameAut(H) text for all 1 leq i leq n \ alpha_ij &in operatornameHom(H, Z(H)) text for all i $neq$ j endalignright.$$



    (The group operation is matrix multiplication, with multiplication defined by composition and addition defined by $(alpha+beta)(x) = alpha(x)beta(x)$.)



    Theorem 3.1 of [2] states that $operatornameAut(G) = mathscrA rtimes S_n$, where $S_n$ is the symmetric group acting on $G$ by permuting the direct factors. Thus $|operatornameAut(G)| = |operatornameAut(H)|^n |operatornameHom(H, Z(H))|^n^2-n n!$



    In your case $operatornameAut(H) cong D_4$ and $operatornameHom(H, Z(H)) cong C_2 times C_2$, so $|operatornameAut(G)| = 2^2n^2+n n!$.






    share|cite|improve this answer











    $endgroup$



    The following papers are relevant:




    [1] J. N. S. Bidwell, M. J. Curran, and D. J. McCaughan, Automorphisms of
    direct products of finite groups, Arch. Math. 86, 481 – 489 (2006).



    [2] J. N. S. Bidwell, Automorphisms of direct products of finite groups II, Arch. Math. 91, 111–121 (2008).




    For your question you want to look at [2]. This paper describes the automorphism group of $G = H^n = H times cdots times H$ where $H$ is an indecomposable non-abelian group. In this case $operatornameAut(G)$ has a normal subgroup $mathscrA$ isomorphic to the group formed by the matrices $$left beginpmatrix alpha_11 & cdots & alpha_1n \ vdots & ddots & vdots \ alpha_n1 & cdots & alpha_nnendpmatrix : beginalignalpha_ii &in operatornameAut(H) text for all 1 leq i leq n \ alpha_ij &in operatornameHom(H, Z(H)) text for all i $neq$ j endalignright.$$



    (The group operation is matrix multiplication, with multiplication defined by composition and addition defined by $(alpha+beta)(x) = alpha(x)beta(x)$.)



    Theorem 3.1 of [2] states that $operatornameAut(G) = mathscrA rtimes S_n$, where $S_n$ is the symmetric group acting on $G$ by permuting the direct factors. Thus $|operatornameAut(G)| = |operatornameAut(H)|^n |operatornameHom(H, Z(H))|^n^2-n n!$



    In your case $operatornameAut(H) cong D_4$ and $operatornameHom(H, Z(H)) cong C_2 times C_2$, so $|operatornameAut(G)| = 2^2n^2+n n!$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Aug 27 '18 at 3:18









    Martin Sleziak

    2,98532128




    2,98532128










    answered Aug 27 '18 at 2:36









    Mikko KorhonenMikko Korhonen

    1,070914




    1,070914











    • $begingroup$
      Thanks for your answer! Can we get things beyond order, like generators of G?
      $endgroup$
      – Sirui Lu
      Aug 27 '18 at 2:39






    • 1




      $begingroup$
      @SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
      $endgroup$
      – Mikko Korhonen
      Aug 27 '18 at 2:53
















    • $begingroup$
      Thanks for your answer! Can we get things beyond order, like generators of G?
      $endgroup$
      – Sirui Lu
      Aug 27 '18 at 2:39






    • 1




      $begingroup$
      @SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
      $endgroup$
      – Mikko Korhonen
      Aug 27 '18 at 2:53















    $begingroup$
    Thanks for your answer! Can we get things beyond order, like generators of G?
    $endgroup$
    – Sirui Lu
    Aug 27 '18 at 2:39




    $begingroup$
    Thanks for your answer! Can we get things beyond order, like generators of G?
    $endgroup$
    – Sirui Lu
    Aug 27 '18 at 2:39




    1




    1




    $begingroup$
    @SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
    $endgroup$
    – Mikko Korhonen
    Aug 27 '18 at 2:53




    $begingroup$
    @SiruiLu: Not sure what you mean. If you know $operatornameAut(H)$ and $operatornameHom(H, Z(H))$, you have an explicit description of all the automorphisms of $G$, not just the number of them.
    $endgroup$
    – Mikko Korhonen
    Aug 27 '18 at 2:53











    0












    $begingroup$

    Mikko Korhonen has already given a good answer. -- But as you asked for
    explicit generators for the automorphism groups -- you can obtain such
    by GAP as follows (you see that 4 generators suffice):



    gap> D4 := Group((1,2,3,4),(1,3));
    Group([ (1,2,3,4), (1,3) ])
    gap> A1 := AutomorphismGroup(D4);
    <group of size 8 with 3 generators>
    gap> SmallGeneratingSet(A1);
    [ [ (2,4), (1,4)(2,3) ] -> [ (1,2)(3,4), (2,4) ],
    [ (2,4), (1,4)(2,3) ] -> [ (2,4), (1,2)(3,4) ] ]
    gap> A2 := AutomorphismGroup(DirectProduct(D4,D4));
    <group of size 2048 with 11 generators>
    gap> SmallGeneratingSet(A2);
    [ [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
    (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
    (1,2)(3,4)(5,7)(6,8), (1,4)(2,3), (1,3)(2,4)(5,8)(6,7) ],
    [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
    (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
    (1,4)(2,3), (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,8)(6,7) ],
    [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
    (1,3)(2,4)(5,8)(6,7) ] -> [ (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(6,8),
    (5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (2,4)(5,7)(6,8) ],
    [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
    (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(5,6)(7,8), (2,4)(5,7)(6,8),
    (1,2)(3,4), (1,4)(2,3)(5,7)(6,8), (1,3)(2,4)(6,8) ] ]
    gap> A3 := AutomorphismGroup(DirectProduct(D4,D4,D4));
    <group of size 12582912 with 23 generators>
    gap> SmallGeneratingSet(A3);
    [ [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
    (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
    (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
    [ (2,4)(5,6)(7,8)(10,12), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
    (1,2)(3,4)(5,6)(7,8)(10,12), (1,4)(2,3)(6,8)(9,12)(10,11),
    (1,3)(5,6)(7,8)(9,10)(11,12), (1,4)(2,3)(5,6)(7,8)(9,12,11,10) ],
    [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
    (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
    (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
    [ (1,3)(5,8)(6,7)(9,10)(11,12), (1,2,3,4)(6,8)(9,11),
    (2,4)(6,8)(9,10)(11,12), (1,2)(3,4)(5,7)(10,12), (2,4)(5,8)(6,7)(9,11),
    (2,4)(5,7)(9,10,11,12) ],
    [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
    (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
    (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
    [ (2,4)(5,8)(6,7)(9,11), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
    (2,4)(5,8)(6,7)(9,10)(11,12), (1,4)(2,3)(6,8)(9,10)(11,12),
    (1,2)(3,4)(5,8)(6,7)(10,12), (1,2,3,4)(5,6)(7,8)(9,12)(10,11) ],
    [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
    (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
    (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
    [ (1,3)(5,7)(9,10)(11,12), (1,4,3,2)(5,8)(6,7)(10,12),
    (1,3)(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,6)(7,8)(9,11),
    (1,3)(5,7)(9,11), (1,3)(5,6)(7,8)(9,12,11,10) ] ]
    gap> A4 := AutomorphismGroup(DirectProduct(D4,D4,D4,D4));
    <group of size 1649267441664 with 40 generators>
    gap> SmallGeneratingSet(A4);
    [ [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
    (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
    16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
    (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
    (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
    [ (2,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16),
    (5,6)(7,8)(9,12)(10,11)(13,15), (1,2)(3,4)(6,8)(9,11)(10,12)(13,14)(15,
    16), (1,3)(5,8)(6,7)(9,11)(13,15)(14,16), (2,4)(6,8)(14,16),
    (1,3)(2,4)(5,6)(7,8)(10,12)(13,16)(14,15),
    (2,4)(5,8)(6,7)(13,14)(15,16), (1,3)(5,7)(6,8)(9,10)(11,12)(14,16) ],
    [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
    (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
    16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
    (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
    (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
    [ (1,3)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16), (1,3)(5,7)(9,10)(11,12),
    (1,3)(2,4)(5,6)(7,8)(10,12)(14,16),
    (1,2)(3,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15),
    (6,8)(10,12)(13,14)(15,16), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,15)(14,
    16), (5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
    (2,4)(6,8)(9,11)(10,12)(13,16)(14,15) ],
    [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
    (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
    16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
    (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
    (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
    [ (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,14)(15,16),
    (5,6)(7,8)(9,11)(13,14)(15,16), (2,4)(6,8)(9,10)(11,12)(13,15)(14,16),
    (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(14,16), (1,4)(2,3)(6,8)(10,12),
    (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,15),
    (1,4)(2,3)(5,8)(6,7)(9,10)(11,12),
    (1,2)(3,4)(5,7)(6,8)(10,12)(13,16)(14,15) ],
    [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
    (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
    16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
    (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
    (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
    [ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
    (1,2)(3,4)(5,8)(6,7)(9,10)(11,12), (1,3)(5,7)(9,11)(10,12)(14,16),
    (1,3)(2,4)(5,8)(6,7)(9,11)(13,16)(14,15),
    (1,2)(3,4)(5,7)(9,11)(10,12)(13,16)(14,15),
    (1,3)(5,6)(7,8)(10,12)(13,15)(14,16), (2,4)(5,8)(6,7)(13,14)(15,16),
    (1,4)(2,3)(9,12)(10,11)(13,16)(14,15) ] ]





    share|cite|improve this answer









    $endgroup$

















      0












      $begingroup$

      Mikko Korhonen has already given a good answer. -- But as you asked for
      explicit generators for the automorphism groups -- you can obtain such
      by GAP as follows (you see that 4 generators suffice):



      gap> D4 := Group((1,2,3,4),(1,3));
      Group([ (1,2,3,4), (1,3) ])
      gap> A1 := AutomorphismGroup(D4);
      <group of size 8 with 3 generators>
      gap> SmallGeneratingSet(A1);
      [ [ (2,4), (1,4)(2,3) ] -> [ (1,2)(3,4), (2,4) ],
      [ (2,4), (1,4)(2,3) ] -> [ (2,4), (1,2)(3,4) ] ]
      gap> A2 := AutomorphismGroup(DirectProduct(D4,D4));
      <group of size 2048 with 11 generators>
      gap> SmallGeneratingSet(A2);
      [ [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
      (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
      (1,2)(3,4)(5,7)(6,8), (1,4)(2,3), (1,3)(2,4)(5,8)(6,7) ],
      [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
      (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
      (1,4)(2,3), (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,8)(6,7) ],
      [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
      (1,3)(2,4)(5,8)(6,7) ] -> [ (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(6,8),
      (5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (2,4)(5,7)(6,8) ],
      [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
      (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(5,6)(7,8), (2,4)(5,7)(6,8),
      (1,2)(3,4), (1,4)(2,3)(5,7)(6,8), (1,3)(2,4)(6,8) ] ]
      gap> A3 := AutomorphismGroup(DirectProduct(D4,D4,D4));
      <group of size 12582912 with 23 generators>
      gap> SmallGeneratingSet(A3);
      [ [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
      (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
      (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
      [ (2,4)(5,6)(7,8)(10,12), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
      (1,2)(3,4)(5,6)(7,8)(10,12), (1,4)(2,3)(6,8)(9,12)(10,11),
      (1,3)(5,6)(7,8)(9,10)(11,12), (1,4)(2,3)(5,6)(7,8)(9,12,11,10) ],
      [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
      (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
      (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
      [ (1,3)(5,8)(6,7)(9,10)(11,12), (1,2,3,4)(6,8)(9,11),
      (2,4)(6,8)(9,10)(11,12), (1,2)(3,4)(5,7)(10,12), (2,4)(5,8)(6,7)(9,11),
      (2,4)(5,7)(9,10,11,12) ],
      [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
      (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
      (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
      [ (2,4)(5,8)(6,7)(9,11), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
      (2,4)(5,8)(6,7)(9,10)(11,12), (1,4)(2,3)(6,8)(9,10)(11,12),
      (1,2)(3,4)(5,8)(6,7)(10,12), (1,2,3,4)(5,6)(7,8)(9,12)(10,11) ],
      [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
      (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
      (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
      [ (1,3)(5,7)(9,10)(11,12), (1,4,3,2)(5,8)(6,7)(10,12),
      (1,3)(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,6)(7,8)(9,11),
      (1,3)(5,7)(9,11), (1,3)(5,6)(7,8)(9,12,11,10) ] ]
      gap> A4 := AutomorphismGroup(DirectProduct(D4,D4,D4,D4));
      <group of size 1649267441664 with 40 generators>
      gap> SmallGeneratingSet(A4);
      [ [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
      (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
      16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
      (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
      (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
      [ (2,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16),
      (5,6)(7,8)(9,12)(10,11)(13,15), (1,2)(3,4)(6,8)(9,11)(10,12)(13,14)(15,
      16), (1,3)(5,8)(6,7)(9,11)(13,15)(14,16), (2,4)(6,8)(14,16),
      (1,3)(2,4)(5,6)(7,8)(10,12)(13,16)(14,15),
      (2,4)(5,8)(6,7)(13,14)(15,16), (1,3)(5,7)(6,8)(9,10)(11,12)(14,16) ],
      [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
      (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
      16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
      (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
      (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
      [ (1,3)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16), (1,3)(5,7)(9,10)(11,12),
      (1,3)(2,4)(5,6)(7,8)(10,12)(14,16),
      (1,2)(3,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15),
      (6,8)(10,12)(13,14)(15,16), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,15)(14,
      16), (5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
      (2,4)(6,8)(9,11)(10,12)(13,16)(14,15) ],
      [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
      (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
      16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
      (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
      (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
      [ (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,14)(15,16),
      (5,6)(7,8)(9,11)(13,14)(15,16), (2,4)(6,8)(9,10)(11,12)(13,15)(14,16),
      (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(14,16), (1,4)(2,3)(6,8)(10,12),
      (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,15),
      (1,4)(2,3)(5,8)(6,7)(9,10)(11,12),
      (1,2)(3,4)(5,7)(6,8)(10,12)(13,16)(14,15) ],
      [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
      (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
      16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
      (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
      (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
      [ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
      (1,2)(3,4)(5,8)(6,7)(9,10)(11,12), (1,3)(5,7)(9,11)(10,12)(14,16),
      (1,3)(2,4)(5,8)(6,7)(9,11)(13,16)(14,15),
      (1,2)(3,4)(5,7)(9,11)(10,12)(13,16)(14,15),
      (1,3)(5,6)(7,8)(10,12)(13,15)(14,16), (2,4)(5,8)(6,7)(13,14)(15,16),
      (1,4)(2,3)(9,12)(10,11)(13,16)(14,15) ] ]





      share|cite|improve this answer









      $endgroup$















        0












        0








        0





        $begingroup$

        Mikko Korhonen has already given a good answer. -- But as you asked for
        explicit generators for the automorphism groups -- you can obtain such
        by GAP as follows (you see that 4 generators suffice):



        gap> D4 := Group((1,2,3,4),(1,3));
        Group([ (1,2,3,4), (1,3) ])
        gap> A1 := AutomorphismGroup(D4);
        <group of size 8 with 3 generators>
        gap> SmallGeneratingSet(A1);
        [ [ (2,4), (1,4)(2,3) ] -> [ (1,2)(3,4), (2,4) ],
        [ (2,4), (1,4)(2,3) ] -> [ (2,4), (1,2)(3,4) ] ]
        gap> A2 := AutomorphismGroup(DirectProduct(D4,D4));
        <group of size 2048 with 11 generators>
        gap> SmallGeneratingSet(A2);
        [ [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
        (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
        (1,2)(3,4)(5,7)(6,8), (1,4)(2,3), (1,3)(2,4)(5,8)(6,7) ],
        [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
        (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
        (1,4)(2,3), (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,8)(6,7) ],
        [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
        (1,3)(2,4)(5,8)(6,7) ] -> [ (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(6,8),
        (5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (2,4)(5,7)(6,8) ],
        [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
        (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(5,6)(7,8), (2,4)(5,7)(6,8),
        (1,2)(3,4), (1,4)(2,3)(5,7)(6,8), (1,3)(2,4)(6,8) ] ]
        gap> A3 := AutomorphismGroup(DirectProduct(D4,D4,D4));
        <group of size 12582912 with 23 generators>
        gap> SmallGeneratingSet(A3);
        [ [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
        (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
        (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
        [ (2,4)(5,6)(7,8)(10,12), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
        (1,2)(3,4)(5,6)(7,8)(10,12), (1,4)(2,3)(6,8)(9,12)(10,11),
        (1,3)(5,6)(7,8)(9,10)(11,12), (1,4)(2,3)(5,6)(7,8)(9,12,11,10) ],
        [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
        (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
        (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
        [ (1,3)(5,8)(6,7)(9,10)(11,12), (1,2,3,4)(6,8)(9,11),
        (2,4)(6,8)(9,10)(11,12), (1,2)(3,4)(5,7)(10,12), (2,4)(5,8)(6,7)(9,11),
        (2,4)(5,7)(9,10,11,12) ],
        [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
        (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
        (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
        [ (2,4)(5,8)(6,7)(9,11), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
        (2,4)(5,8)(6,7)(9,10)(11,12), (1,4)(2,3)(6,8)(9,10)(11,12),
        (1,2)(3,4)(5,8)(6,7)(10,12), (1,2,3,4)(5,6)(7,8)(9,12)(10,11) ],
        [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
        (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
        (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
        [ (1,3)(5,7)(9,10)(11,12), (1,4,3,2)(5,8)(6,7)(10,12),
        (1,3)(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,6)(7,8)(9,11),
        (1,3)(5,7)(9,11), (1,3)(5,6)(7,8)(9,12,11,10) ] ]
        gap> A4 := AutomorphismGroup(DirectProduct(D4,D4,D4,D4));
        <group of size 1649267441664 with 40 generators>
        gap> SmallGeneratingSet(A4);
        [ [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
        (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
        16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
        (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
        (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
        [ (2,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16),
        (5,6)(7,8)(9,12)(10,11)(13,15), (1,2)(3,4)(6,8)(9,11)(10,12)(13,14)(15,
        16), (1,3)(5,8)(6,7)(9,11)(13,15)(14,16), (2,4)(6,8)(14,16),
        (1,3)(2,4)(5,6)(7,8)(10,12)(13,16)(14,15),
        (2,4)(5,8)(6,7)(13,14)(15,16), (1,3)(5,7)(6,8)(9,10)(11,12)(14,16) ],
        [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
        (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
        16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
        (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
        (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
        [ (1,3)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16), (1,3)(5,7)(9,10)(11,12),
        (1,3)(2,4)(5,6)(7,8)(10,12)(14,16),
        (1,2)(3,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15),
        (6,8)(10,12)(13,14)(15,16), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,15)(14,
        16), (5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
        (2,4)(6,8)(9,11)(10,12)(13,16)(14,15) ],
        [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
        (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
        16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
        (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
        (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
        [ (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,14)(15,16),
        (5,6)(7,8)(9,11)(13,14)(15,16), (2,4)(6,8)(9,10)(11,12)(13,15)(14,16),
        (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(14,16), (1,4)(2,3)(6,8)(10,12),
        (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,15),
        (1,4)(2,3)(5,8)(6,7)(9,10)(11,12),
        (1,2)(3,4)(5,7)(6,8)(10,12)(13,16)(14,15) ],
        [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
        (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
        16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
        (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
        (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
        [ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
        (1,2)(3,4)(5,8)(6,7)(9,10)(11,12), (1,3)(5,7)(9,11)(10,12)(14,16),
        (1,3)(2,4)(5,8)(6,7)(9,11)(13,16)(14,15),
        (1,2)(3,4)(5,7)(9,11)(10,12)(13,16)(14,15),
        (1,3)(5,6)(7,8)(10,12)(13,15)(14,16), (2,4)(5,8)(6,7)(13,14)(15,16),
        (1,4)(2,3)(9,12)(10,11)(13,16)(14,15) ] ]





        share|cite|improve this answer









        $endgroup$



        Mikko Korhonen has already given a good answer. -- But as you asked for
        explicit generators for the automorphism groups -- you can obtain such
        by GAP as follows (you see that 4 generators suffice):



        gap> D4 := Group((1,2,3,4),(1,3));
        Group([ (1,2,3,4), (1,3) ])
        gap> A1 := AutomorphismGroup(D4);
        <group of size 8 with 3 generators>
        gap> SmallGeneratingSet(A1);
        [ [ (2,4), (1,4)(2,3) ] -> [ (1,2)(3,4), (2,4) ],
        [ (2,4), (1,4)(2,3) ] -> [ (2,4), (1,2)(3,4) ] ]
        gap> A2 := AutomorphismGroup(DirectProduct(D4,D4));
        <group of size 2048 with 11 generators>
        gap> SmallGeneratingSet(A2);
        [ [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
        (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
        (1,2)(3,4)(5,7)(6,8), (1,4)(2,3), (1,3)(2,4)(5,8)(6,7) ],
        [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
        (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8),
        (1,4)(2,3), (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(5,8)(6,7) ],
        [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
        (1,3)(2,4)(5,8)(6,7) ] -> [ (1,2)(3,4)(5,7)(6,8), (1,3)(2,4)(6,8),
        (5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (2,4)(5,7)(6,8) ],
        [ (1,3)(2,4)(6,8), (2,4)(5,7)(6,8), (1,2)(3,4), (1,4)(2,3)(5,7)(6,8),
        (1,3)(2,4)(5,8)(6,7) ] -> [ (1,3)(2,4)(5,6)(7,8), (2,4)(5,7)(6,8),
        (1,2)(3,4), (1,4)(2,3)(5,7)(6,8), (1,3)(2,4)(6,8) ] ]
        gap> A3 := AutomorphismGroup(DirectProduct(D4,D4,D4));
        <group of size 12582912 with 23 generators>
        gap> SmallGeneratingSet(A3);
        [ [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
        (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
        (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
        [ (2,4)(5,6)(7,8)(10,12), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
        (1,2)(3,4)(5,6)(7,8)(10,12), (1,4)(2,3)(6,8)(9,12)(10,11),
        (1,3)(5,6)(7,8)(9,10)(11,12), (1,4)(2,3)(5,6)(7,8)(9,12,11,10) ],
        [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
        (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
        (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
        [ (1,3)(5,8)(6,7)(9,10)(11,12), (1,2,3,4)(6,8)(9,11),
        (2,4)(6,8)(9,10)(11,12), (1,2)(3,4)(5,7)(10,12), (2,4)(5,8)(6,7)(9,11),
        (2,4)(5,7)(9,10,11,12) ],
        [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
        (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
        (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
        [ (2,4)(5,8)(6,7)(9,11), (1,4)(2,3)(5,6,7,8)(9,10)(11,12),
        (2,4)(5,8)(6,7)(9,10)(11,12), (1,4)(2,3)(6,8)(9,10)(11,12),
        (1,2)(3,4)(5,8)(6,7)(10,12), (1,2,3,4)(5,6)(7,8)(9,12)(10,11) ],
        [ (1,2)(3,4)(6,8)(9,11), (1,2,3,4)(5,6)(7,8)(9,10)(11,12),
        (1,2)(3,4)(5,6)(7,8)(10,12), (1,3)(5,6)(7,8)(9,10)(11,12),
        (1,4)(2,3)(6,8)(9,12)(10,11), (1,2)(3,4)(5,8)(6,7)(9,10,11,12) ] ->
        [ (1,3)(5,7)(9,10)(11,12), (1,4,3,2)(5,8)(6,7)(10,12),
        (1,3)(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,6)(7,8)(9,11),
        (1,3)(5,7)(9,11), (1,3)(5,6)(7,8)(9,12,11,10) ] ]
        gap> A4 := AutomorphismGroup(DirectProduct(D4,D4,D4,D4));
        <group of size 1649267441664 with 40 generators>
        gap> SmallGeneratingSet(A4);
        [ [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
        (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
        16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
        (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
        (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
        [ (2,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16),
        (5,6)(7,8)(9,12)(10,11)(13,15), (1,2)(3,4)(6,8)(9,11)(10,12)(13,14)(15,
        16), (1,3)(5,8)(6,7)(9,11)(13,15)(14,16), (2,4)(6,8)(14,16),
        (1,3)(2,4)(5,6)(7,8)(10,12)(13,16)(14,15),
        (2,4)(5,8)(6,7)(13,14)(15,16), (1,3)(5,7)(6,8)(9,10)(11,12)(14,16) ],
        [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
        (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
        16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
        (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
        (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
        [ (1,3)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16), (1,3)(5,7)(9,10)(11,12),
        (1,3)(2,4)(5,6)(7,8)(10,12)(14,16),
        (1,2)(3,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15),
        (6,8)(10,12)(13,14)(15,16), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,15)(14,
        16), (5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
        (2,4)(6,8)(9,11)(10,12)(13,16)(14,15) ],
        [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
        (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
        16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
        (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
        (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
        [ (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,14)(15,16),
        (5,6)(7,8)(9,11)(13,14)(15,16), (2,4)(6,8)(9,10)(11,12)(13,15)(14,16),
        (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(14,16), (1,4)(2,3)(6,8)(10,12),
        (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,15),
        (1,4)(2,3)(5,8)(6,7)(9,10)(11,12),
        (1,2)(3,4)(5,7)(6,8)(10,12)(13,16)(14,15) ],
        [ (2,4)(5,6)(7,8)(9,11)(10,12)(13,16)(14,15),
        (5,6)(7,8)(9,11)(13,16)(14,15), (1,2)(3,4)(6,8)(9,10)(11,12)(13,15)(14,
        16), (1,3)(5,8)(6,7)(9,11)(10,12)(13,15), (2,4)(6,8)(10,12),
        (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(14,16), (2,4)(5,8)(6,7)(9,10)(11,12),
        (1,3)(5,7)(6,8)(10,12)(13,14)(15,16) ] ->
        [ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16),
        (1,2)(3,4)(5,8)(6,7)(9,10)(11,12), (1,3)(5,7)(9,11)(10,12)(14,16),
        (1,3)(2,4)(5,8)(6,7)(9,11)(13,16)(14,15),
        (1,2)(3,4)(5,7)(9,11)(10,12)(13,16)(14,15),
        (1,3)(5,6)(7,8)(10,12)(13,15)(14,16), (2,4)(5,8)(6,7)(13,14)(15,16),
        (1,4)(2,3)(9,12)(10,11)(13,16)(14,15) ] ]






        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 15 '18 at 15:08









        Stefan KohlStefan Kohl

        12.5k956112




        12.5k956112



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f309188%2fwhat-are-the-automorphism-groups-of-direct-products-of-dihedral-group-d4%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

            ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế

            ⃀⃉⃄⃅⃍,⃂₼₡₰⃉₡₿₢⃉₣⃄₯⃊₮₼₹₱₦₷⃄₪₼₶₳₫⃍₽ ₫₪₦⃆₠₥⃁₸₴₷⃊₹⃅⃈₰⃁₫ ⃎⃍₩₣₷ ₻₮⃊⃀⃄⃉₯,⃏⃊,₦⃅₪,₼⃀₾₧₷₾ ₻ ₸₡ ₾,₭⃈₴⃋,€⃁,₩ ₺⃌⃍⃁₱⃋⃋₨⃊⃁⃃₼,⃎,₱⃍₲₶₡ ⃍⃅₶₨₭,⃉₭₾₡₻⃀ ₼₹⃅₹,₻₭ ⃌