ANOVA on R with different dependent variables

ANOVA on R with different dependent variables



I know so far how to run a ANOVA on R, but I allways have to duplicate the code to run de ANOVA for another variable, I was wondering if I could pass it somehow to the aov() in a loop the names of the variables and store the result of the ANOVA in variables so I don't have to manually change them by copying the code block.



E.G.:



Variables I want to test: Z, Y, X



Categorical Variable: Treatment



VectorVariables = c(Z, Y, X)


for (i in Vector)
AnovaZ <- aov(Z ~ Treatment) #then
AnovaY <- aov(Y ~ Treatment) # and so on..




It is possible in some way??





You should probably read this: Fast post hoc computation using R
– 李哲源
Sep 1 at 13:16






@李哲源 I vote to re-open because (in my opinion) OP's question is not (directly) about post-hoc tests. At this point in time OP is asking about how to perform ANOVAs for different response variables in an efficient manner. Post-hoc tests address the issue with increased type I errors due to multiple testing. This may be related, but is not what OP is asking.
– Maurits Evers
Sep 1 at 13:47






@李哲源 OP doesn't mention any post-hoc tests (such as e.g. TukeyHSD), so I'm not sure what he's planning to do after the ANOVAs. I don't see any "maov" references either. Perhaps OP should clarify. I was under the impression that he simply wants to perform two independent ANOVAs. A post-hoc test is only relevant for controlling the overall false-positive error rate in a single study involving multiple tests.
– Maurits Evers
Sep 1 at 14:03


TukeyHSD




3 Answers
3



There is no need for a for loop! You can simply cbind different response variables together.


for


cbind



Here is an example:



Since you don't provide a sample dataset, I generate some sample data based on the npk dataset, where I add a second response variable yield2 which is the same as yield with some added white noise.


npk


yield2


yield


set.seed(2018)
df <- npk
df$yield2 <- df$yield + rnorm(nrow(df), mean = 0, sd = 5)



Perform ANOVAs based on the two response variables yield and yield2


yield


yield2


res <- aov(cbind(yield, yield2) ~ block, df)
#Call:
# aov(formula = cbind(yield, yield2) ~ block, data = df)
#
#Terms:
# block Residuals
#resp 1 343.295 533.070
#resp 2 905.0327 847.2597
#Deg. of Freedom 5 18
#
#Residual standard errors: 5.441967 6.860757
#Estimated effects may be unbalanced



resp 1 and resp 2 give the sum of squares that you get if you had run aov(yield ~ block, df) and aov(yield2 ~ block, df) individually.


resp 1


resp 2


aov(yield ~ block, df)


aov(yield2 ~ block, df)



So in your case, the command would be something like


res <- aov(cbind(Y, Z) ~ Treatment)



Or if you want to run and store results from separate ANOVAs, store the response variables in a list and use lapply:


list


lapply


lapply(list(Y = "Y", Z = "Z"), function(x)
aov(as.formula(sprintf("%s ~ Treatment", x)), df))



This produces a list of ANOVA results, where every list element corresponds to a response variable.


list


list



If you want to do a loop, the trick is to use as.formula(paste()).


as.formula(paste())



Create a list (we'll call it result) to store each aov output. Then loop through dependent variable names stored in Vector:


result


aov


Vector


n <- length(Vector)
result <- vector(mode="list", length=n)
for(i in 1:n)
result[[i]] <- aov(as.formula(paste(Vector[i], "~ Treament")))



Another solution is to use list columns and purrr::map. This can be useful when working with many models (e.g. see http://r4ds.had.co.nz/many-models.html).


library(tidyverse)

aov_f <- function(df) aov(value ~ carb, data = df)

mtcars_n <- gather(mtcars, obs, value, mpg:gear) %>%
group_by(obs) %>%
nest() %>%
mutate(aov = map(data, aov_f))





Thank you Matt, I will look at it!
– Paulo Barros
Nov 17 at 22:11



Thanks for contributing an answer to Stack Overflow!



But avoid



To learn more, see our tips on writing great answers.



Some of your past answers have not been well-received, and you're in danger of being blocked from answering.



Please pay close attention to the following guidance:



But avoid



To learn more, see our tips on writing great answers.



Required, but never shown



Required, but never shown






By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.

Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế

⃀⃉⃄⃅⃍,⃂₼₡₰⃉₡₿₢⃉₣⃄₯⃊₮₼₹₱₦₷⃄₪₼₶₳₫⃍₽ ₫₪₦⃆₠₥⃁₸₴₷⃊₹⃅⃈₰⃁₫ ⃎⃍₩₣₷ ₻₮⃊⃀⃄⃉₯,⃏⃊,₦⃅₪,₼⃀₾₧₷₾ ₻ ₸₡ ₾,₭⃈₴⃋,€⃁,₩ ₺⃌⃍⃁₱⃋⃋₨⃊⃁⃃₼,⃎,₱⃍₲₶₡ ⃍⃅₶₨₭,⃉₭₾₡₻⃀ ₼₹⃅₹,₻₭ ⃌