Operator Norm from Geometrical Point of View
up vote
2
down vote
favorite
I'm trying to understand some Functional Analysis concepts from Geometrical point of view. So I know that Metric ($d(a,b)$) is the distance between elements, Norm ($||a||$) is the length of element.
So I'd like to know how Operator Norm ($||A||$, $A: X to Y$) could be represented as Geometrical concept.
geometry functional-analysis normed-spaces
add a comment |
up vote
2
down vote
favorite
I'm trying to understand some Functional Analysis concepts from Geometrical point of view. So I know that Metric ($d(a,b)$) is the distance between elements, Norm ($||a||$) is the length of element.
So I'd like to know how Operator Norm ($||A||$, $A: X to Y$) could be represented as Geometrical concept.
geometry functional-analysis normed-spaces
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I'm trying to understand some Functional Analysis concepts from Geometrical point of view. So I know that Metric ($d(a,b)$) is the distance between elements, Norm ($||a||$) is the length of element.
So I'd like to know how Operator Norm ($||A||$, $A: X to Y$) could be represented as Geometrical concept.
geometry functional-analysis normed-spaces
I'm trying to understand some Functional Analysis concepts from Geometrical point of view. So I know that Metric ($d(a,b)$) is the distance between elements, Norm ($||a||$) is the length of element.
So I'd like to know how Operator Norm ($||A||$, $A: X to Y$) could be represented as Geometrical concept.
geometry functional-analysis normed-spaces
geometry functional-analysis normed-spaces
asked Aug 23 at 7:14
Denis Sablukov
11615
11615
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
8
down vote
accepted
If $A:Xto Y$ is a linear bounded operator between the normed spaces $X,Y$, then the norm of $A$ is, loosely speaking, the factor by which the unit ball of $X$ gets inflated or deflated. More precisely, it is the smallest number $alpha>0$ by which you need to dilate the unit ball of $Y$, so that $alpha B_Y$ will contain the image of the unit ball of $X$ under the mapping $A$.
For example, a diagonal matrix $D=d_i_i=1^n$ in $mathbbR^n$ maps the Euclidean unit ball to an ellipsoid, whose principal axis have lengths $2|d_i|$. The maximum of $|d_i|$ is of course the norm of this diagonal operator as a map between $ell_2^n$ and itself. It is also the smallest number by which you need to multiply the unit ball of $ell_2^n$ in order that the inflated ball will contain the ellipsoid $D(B_2^n)$, where $B_2^n$ is the unit ball of $ell_2^n$.
add a comment |
up vote
5
down vote
Take the (closed) unit ball $B$. It is all the points of norm at most $1$.
Now, apply the operator $T$ to the unit ball, to get a convex set $T(B)$. The operator norm of $T$ is the radius of the smallest ball centered at $0$ that will contain $T(B)$. In finite dimensions, you think of $T$ turning the unit disk into some sort of ellipse-like region and the maximal distance from the origin of the boundary of this region is the operator norm.
For example, if $|T| = 0$, then that means that $T$ sends $B$ to the single point $0$, because the smallest closed ball containing $T(B)$ is in fact just the set $0$. We then have by linearity that $T$ is identically zero.
This is why the inequality $|TS| leq |T||S|$ is actually intuitive. Let $r$ be the radius of the smallest closed ball containing $TS(B)$ (i.e. the operator norm of $TS$). If we look at the smallest radius that contains $S(B)$, $s$, and apply $T$ to that radius ball and ask what is the smallest ball containing that set, get $|T||S|$, but since this set clearly contains $TS(B)$, because instead of $T(S(B))$, we took $T(sB)$ and $S(B) subset sB$, by definition of $s$.
Likewise, you can check geometrically the triangle inequality: $|T + S| leq |T| + |S|$, because $(T + S)(B) subset T(B) + S(B)$, because the first depends on adding only the points of the image that come from the same vector (i.e. $T(v) + S(v)$, but not $T(v) + S(w)$ if $v neq w$) and the latter adds using all vectors in $B$ for arguments of $T$ and any vector in $B$ for an argument for $S$. Then we see that if $t$ is the smallest radius containing $T(B)$ and $s$ is the smallest radius contain $S(B)$, then the smallest radius containing $T(B) + S(B)$ is at most $t+s$, because $tB + sB = (t+s)B$, as sets.
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
accepted
If $A:Xto Y$ is a linear bounded operator between the normed spaces $X,Y$, then the norm of $A$ is, loosely speaking, the factor by which the unit ball of $X$ gets inflated or deflated. More precisely, it is the smallest number $alpha>0$ by which you need to dilate the unit ball of $Y$, so that $alpha B_Y$ will contain the image of the unit ball of $X$ under the mapping $A$.
For example, a diagonal matrix $D=d_i_i=1^n$ in $mathbbR^n$ maps the Euclidean unit ball to an ellipsoid, whose principal axis have lengths $2|d_i|$. The maximum of $|d_i|$ is of course the norm of this diagonal operator as a map between $ell_2^n$ and itself. It is also the smallest number by which you need to multiply the unit ball of $ell_2^n$ in order that the inflated ball will contain the ellipsoid $D(B_2^n)$, where $B_2^n$ is the unit ball of $ell_2^n$.
add a comment |
up vote
8
down vote
accepted
If $A:Xto Y$ is a linear bounded operator between the normed spaces $X,Y$, then the norm of $A$ is, loosely speaking, the factor by which the unit ball of $X$ gets inflated or deflated. More precisely, it is the smallest number $alpha>0$ by which you need to dilate the unit ball of $Y$, so that $alpha B_Y$ will contain the image of the unit ball of $X$ under the mapping $A$.
For example, a diagonal matrix $D=d_i_i=1^n$ in $mathbbR^n$ maps the Euclidean unit ball to an ellipsoid, whose principal axis have lengths $2|d_i|$. The maximum of $|d_i|$ is of course the norm of this diagonal operator as a map between $ell_2^n$ and itself. It is also the smallest number by which you need to multiply the unit ball of $ell_2^n$ in order that the inflated ball will contain the ellipsoid $D(B_2^n)$, where $B_2^n$ is the unit ball of $ell_2^n$.
add a comment |
up vote
8
down vote
accepted
up vote
8
down vote
accepted
If $A:Xto Y$ is a linear bounded operator between the normed spaces $X,Y$, then the norm of $A$ is, loosely speaking, the factor by which the unit ball of $X$ gets inflated or deflated. More precisely, it is the smallest number $alpha>0$ by which you need to dilate the unit ball of $Y$, so that $alpha B_Y$ will contain the image of the unit ball of $X$ under the mapping $A$.
For example, a diagonal matrix $D=d_i_i=1^n$ in $mathbbR^n$ maps the Euclidean unit ball to an ellipsoid, whose principal axis have lengths $2|d_i|$. The maximum of $|d_i|$ is of course the norm of this diagonal operator as a map between $ell_2^n$ and itself. It is also the smallest number by which you need to multiply the unit ball of $ell_2^n$ in order that the inflated ball will contain the ellipsoid $D(B_2^n)$, where $B_2^n$ is the unit ball of $ell_2^n$.
If $A:Xto Y$ is a linear bounded operator between the normed spaces $X,Y$, then the norm of $A$ is, loosely speaking, the factor by which the unit ball of $X$ gets inflated or deflated. More precisely, it is the smallest number $alpha>0$ by which you need to dilate the unit ball of $Y$, so that $alpha B_Y$ will contain the image of the unit ball of $X$ under the mapping $A$.
For example, a diagonal matrix $D=d_i_i=1^n$ in $mathbbR^n$ maps the Euclidean unit ball to an ellipsoid, whose principal axis have lengths $2|d_i|$. The maximum of $|d_i|$ is of course the norm of this diagonal operator as a map between $ell_2^n$ and itself. It is also the smallest number by which you need to multiply the unit ball of $ell_2^n$ in order that the inflated ball will contain the ellipsoid $D(B_2^n)$, where $B_2^n$ is the unit ball of $ell_2^n$.
answered Aug 23 at 7:25
uniquesolution
8,631823
8,631823
add a comment |
add a comment |
up vote
5
down vote
Take the (closed) unit ball $B$. It is all the points of norm at most $1$.
Now, apply the operator $T$ to the unit ball, to get a convex set $T(B)$. The operator norm of $T$ is the radius of the smallest ball centered at $0$ that will contain $T(B)$. In finite dimensions, you think of $T$ turning the unit disk into some sort of ellipse-like region and the maximal distance from the origin of the boundary of this region is the operator norm.
For example, if $|T| = 0$, then that means that $T$ sends $B$ to the single point $0$, because the smallest closed ball containing $T(B)$ is in fact just the set $0$. We then have by linearity that $T$ is identically zero.
This is why the inequality $|TS| leq |T||S|$ is actually intuitive. Let $r$ be the radius of the smallest closed ball containing $TS(B)$ (i.e. the operator norm of $TS$). If we look at the smallest radius that contains $S(B)$, $s$, and apply $T$ to that radius ball and ask what is the smallest ball containing that set, get $|T||S|$, but since this set clearly contains $TS(B)$, because instead of $T(S(B))$, we took $T(sB)$ and $S(B) subset sB$, by definition of $s$.
Likewise, you can check geometrically the triangle inequality: $|T + S| leq |T| + |S|$, because $(T + S)(B) subset T(B) + S(B)$, because the first depends on adding only the points of the image that come from the same vector (i.e. $T(v) + S(v)$, but not $T(v) + S(w)$ if $v neq w$) and the latter adds using all vectors in $B$ for arguments of $T$ and any vector in $B$ for an argument for $S$. Then we see that if $t$ is the smallest radius containing $T(B)$ and $s$ is the smallest radius contain $S(B)$, then the smallest radius containing $T(B) + S(B)$ is at most $t+s$, because $tB + sB = (t+s)B$, as sets.
add a comment |
up vote
5
down vote
Take the (closed) unit ball $B$. It is all the points of norm at most $1$.
Now, apply the operator $T$ to the unit ball, to get a convex set $T(B)$. The operator norm of $T$ is the radius of the smallest ball centered at $0$ that will contain $T(B)$. In finite dimensions, you think of $T$ turning the unit disk into some sort of ellipse-like region and the maximal distance from the origin of the boundary of this region is the operator norm.
For example, if $|T| = 0$, then that means that $T$ sends $B$ to the single point $0$, because the smallest closed ball containing $T(B)$ is in fact just the set $0$. We then have by linearity that $T$ is identically zero.
This is why the inequality $|TS| leq |T||S|$ is actually intuitive. Let $r$ be the radius of the smallest closed ball containing $TS(B)$ (i.e. the operator norm of $TS$). If we look at the smallest radius that contains $S(B)$, $s$, and apply $T$ to that radius ball and ask what is the smallest ball containing that set, get $|T||S|$, but since this set clearly contains $TS(B)$, because instead of $T(S(B))$, we took $T(sB)$ and $S(B) subset sB$, by definition of $s$.
Likewise, you can check geometrically the triangle inequality: $|T + S| leq |T| + |S|$, because $(T + S)(B) subset T(B) + S(B)$, because the first depends on adding only the points of the image that come from the same vector (i.e. $T(v) + S(v)$, but not $T(v) + S(w)$ if $v neq w$) and the latter adds using all vectors in $B$ for arguments of $T$ and any vector in $B$ for an argument for $S$. Then we see that if $t$ is the smallest radius containing $T(B)$ and $s$ is the smallest radius contain $S(B)$, then the smallest radius containing $T(B) + S(B)$ is at most $t+s$, because $tB + sB = (t+s)B$, as sets.
add a comment |
up vote
5
down vote
up vote
5
down vote
Take the (closed) unit ball $B$. It is all the points of norm at most $1$.
Now, apply the operator $T$ to the unit ball, to get a convex set $T(B)$. The operator norm of $T$ is the radius of the smallest ball centered at $0$ that will contain $T(B)$. In finite dimensions, you think of $T$ turning the unit disk into some sort of ellipse-like region and the maximal distance from the origin of the boundary of this region is the operator norm.
For example, if $|T| = 0$, then that means that $T$ sends $B$ to the single point $0$, because the smallest closed ball containing $T(B)$ is in fact just the set $0$. We then have by linearity that $T$ is identically zero.
This is why the inequality $|TS| leq |T||S|$ is actually intuitive. Let $r$ be the radius of the smallest closed ball containing $TS(B)$ (i.e. the operator norm of $TS$). If we look at the smallest radius that contains $S(B)$, $s$, and apply $T$ to that radius ball and ask what is the smallest ball containing that set, get $|T||S|$, but since this set clearly contains $TS(B)$, because instead of $T(S(B))$, we took $T(sB)$ and $S(B) subset sB$, by definition of $s$.
Likewise, you can check geometrically the triangle inequality: $|T + S| leq |T| + |S|$, because $(T + S)(B) subset T(B) + S(B)$, because the first depends on adding only the points of the image that come from the same vector (i.e. $T(v) + S(v)$, but not $T(v) + S(w)$ if $v neq w$) and the latter adds using all vectors in $B$ for arguments of $T$ and any vector in $B$ for an argument for $S$. Then we see that if $t$ is the smallest radius containing $T(B)$ and $s$ is the smallest radius contain $S(B)$, then the smallest radius containing $T(B) + S(B)$ is at most $t+s$, because $tB + sB = (t+s)B$, as sets.
Take the (closed) unit ball $B$. It is all the points of norm at most $1$.
Now, apply the operator $T$ to the unit ball, to get a convex set $T(B)$. The operator norm of $T$ is the radius of the smallest ball centered at $0$ that will contain $T(B)$. In finite dimensions, you think of $T$ turning the unit disk into some sort of ellipse-like region and the maximal distance from the origin of the boundary of this region is the operator norm.
For example, if $|T| = 0$, then that means that $T$ sends $B$ to the single point $0$, because the smallest closed ball containing $T(B)$ is in fact just the set $0$. We then have by linearity that $T$ is identically zero.
This is why the inequality $|TS| leq |T||S|$ is actually intuitive. Let $r$ be the radius of the smallest closed ball containing $TS(B)$ (i.e. the operator norm of $TS$). If we look at the smallest radius that contains $S(B)$, $s$, and apply $T$ to that radius ball and ask what is the smallest ball containing that set, get $|T||S|$, but since this set clearly contains $TS(B)$, because instead of $T(S(B))$, we took $T(sB)$ and $S(B) subset sB$, by definition of $s$.
Likewise, you can check geometrically the triangle inequality: $|T + S| leq |T| + |S|$, because $(T + S)(B) subset T(B) + S(B)$, because the first depends on adding only the points of the image that come from the same vector (i.e. $T(v) + S(v)$, but not $T(v) + S(w)$ if $v neq w$) and the latter adds using all vectors in $B$ for arguments of $T$ and any vector in $B$ for an argument for $S$. Then we see that if $t$ is the smallest radius containing $T(B)$ and $s$ is the smallest radius contain $S(B)$, then the smallest radius containing $T(B) + S(B)$ is at most $t+s$, because $tB + sB = (t+s)B$, as sets.
answered Aug 23 at 7:32
4-ier
6139
6139
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2891803%2foperator-norm-from-geometrical-point-of-view%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown