Calculate monthly returns from daily returns in pandas(cumpound)

Calculate monthly returns from daily returns in pandas(cumpound)



I was trying to calculate monthly returns for a particular stock, but I can't figure out a good method which doesn't use a big quantity of for cycles.
The df has the following form


MSFT-US AAPL-US GE RF
20150501 1.01 -0.33 -0.60 0.000
20150504 0.32 0.06 0.16 0.000
20150505 -1.19 -0.10 0.34 0.000
20150506 -0.31 0.62 -0.20 0.000
20150507 0.39 0.03 -0.43 0.000
20150508 1.21 -0.54 -0.21 0.000
20150511 -0.39 0.67 -0.11 0.000
20150512 -0.27 0.00 0.11 0.000
20150513 0.01 0.02 -0.06 0.000
20150514 1.01 -0.10 -0.36 0.000
20150515 0.05 -0.26 -0.01 0.000
20150518 0.44 0.72 -0.09 0.000
20150519 -0.09 -0.08 0.03 0.000
20150520 -0.05 0.21 -0.09 0.000
20150521 0.23 -0.31 0.09 0.000
20150522 -0.22 -0.11 -0.14 0.000
20150526 -1.01 -0.04 -0.02 0.000
20150527 0.93 0.33 -0.39 0.000
20150528 -0.11 0.11 0.07 0.000
20150529 -0.58 0.02 0.05 0.000



So I want to have something like this (but coumpound not sum):


MSFT-US AAPL-US GE RF
201505 1.36 0.92 -1.89 0.00






How is the return 1.36 for MSFT-US?

– Zero
Sep 7 '18 at 8:03







Possible duplicate of Pandas group-by and sum

– trollster
Sep 7 '18 at 8:05




2 Answers
2



Assuming your date column is called 'date':


'date'


df['month'] = df['date'].astype(str).str[:6]

monthly_total = df.groupby('month').sum().drop('date', axis='columns')



gives you


MSFT-US AAPL-US GE RF
month
201505 1.38 0.92 -1.86 0.0



To get compound returns, we need to add 1 to each value and then use .prod():


.prod()


df[['MSFT-US', 'AAPL-US', 'GE', 'RF']] += 1
monthly_total = df.groupby('month').prod().drop('date', axis='columns')



Giving us:


MSFT-US AAPL-US GE RF
month
201505 0.008739 0.946043 0.070769 1.0






but if i want compound returns?

– ok_dataentry
Sep 7 '18 at 9:25






@ok_dataentry what do you mean by that?

– asongtoruin
Sep 7 '18 at 9:26






for MSFT-US for example: (1+1.01)*(1+0.32)*(1+(-1.19))....

– ok_dataentry
Sep 7 '18 at 9:37







@ok_dataentry edited it into the answer

– asongtoruin
Sep 7 '18 at 9:46


df.index = df.index.map(lambda x:pd.to_datetime(str(x)))
df.groupby([df.index.year,df.index.month]).sum()



output:


MSFT-US AAPL-US GE RF
2015 5 1.38 0.92 -1.86 0.0






what happens if the data spans more than one year?

– asongtoruin
Sep 7 '18 at 8:17






we can group it out to consider the index years. i just included . thanks

– Naga Kiran
Sep 7 '18 at 8:24



Thanks for contributing an answer to Stack Overflow!



But avoid



To learn more, see our tips on writing great answers.



Required, but never shown



Required, but never shown




By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.

Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế

⃀⃉⃄⃅⃍,⃂₼₡₰⃉₡₿₢⃉₣⃄₯⃊₮₼₹₱₦₷⃄₪₼₶₳₫⃍₽ ₫₪₦⃆₠₥⃁₸₴₷⃊₹⃅⃈₰⃁₫ ⃎⃍₩₣₷ ₻₮⃊⃀⃄⃉₯,⃏⃊,₦⃅₪,₼⃀₾₧₷₾ ₻ ₸₡ ₾,₭⃈₴⃋,€⃁,₩ ₺⃌⃍⃁₱⃋⃋₨⃊⃁⃃₼,⃎,₱⃍₲₶₡ ⃍⃅₶₨₭,⃉₭₾₡₻⃀ ₼₹⃅₹,₻₭ ⃌