Adding/subtracting sinusoids










1












$begingroup$


I'm trying to calculate resultant function from adding two sinusoids:



$9sin(omega t + tfracpi3)$ and $-7sin(omega t - tfrac3pi8)$



The correct answer is $14.38sin(omega t + 1.444)$, but I get $14.38sin(omega t + 2.745)$.



My calculations are (first using cosine rule to obtain resultant $v$ as):
$sqrt9^2 + (-7)^2 - (2 cdot 9 cdot (-7) cdot cos(pi - tfracpi3 + tfrac3pi8)) = 14.38$



And the angle (using the sine rule):
$pi - arcsin(|-7| sin(pi - tfracpi3 + tfrac3pi8) / 14.38) = 157$ ° or $2.745$ radians.










share|improve this question











$endgroup$







  • 2




    $begingroup$
    Your question will be much more readable if you format the math properly. I have edited a portion of the question to get you started, and you can find complete instructions here: dsp.stackexchange.com/editing-help#latex. I have also selected a better tag, since your question is unrelated to wavelets.
    $endgroup$
    – MBaz
    Aug 27 '18 at 18:13










  • $begingroup$
    Great! Just be mindful of the "" before "sin" and "cos". I fixed those for you.
    $endgroup$
    – MBaz
    Aug 27 '18 at 18:20










  • $begingroup$
    and lose the asterisks unless you're discussing convolution.
    $endgroup$
    – robert bristow-johnson
    Aug 27 '18 at 18:58















1












$begingroup$


I'm trying to calculate resultant function from adding two sinusoids:



$9sin(omega t + tfracpi3)$ and $-7sin(omega t - tfrac3pi8)$



The correct answer is $14.38sin(omega t + 1.444)$, but I get $14.38sin(omega t + 2.745)$.



My calculations are (first using cosine rule to obtain resultant $v$ as):
$sqrt9^2 + (-7)^2 - (2 cdot 9 cdot (-7) cdot cos(pi - tfracpi3 + tfrac3pi8)) = 14.38$



And the angle (using the sine rule):
$pi - arcsin(|-7| sin(pi - tfracpi3 + tfrac3pi8) / 14.38) = 157$ ° or $2.745$ radians.










share|improve this question











$endgroup$







  • 2




    $begingroup$
    Your question will be much more readable if you format the math properly. I have edited a portion of the question to get you started, and you can find complete instructions here: dsp.stackexchange.com/editing-help#latex. I have also selected a better tag, since your question is unrelated to wavelets.
    $endgroup$
    – MBaz
    Aug 27 '18 at 18:13










  • $begingroup$
    Great! Just be mindful of the "" before "sin" and "cos". I fixed those for you.
    $endgroup$
    – MBaz
    Aug 27 '18 at 18:20










  • $begingroup$
    and lose the asterisks unless you're discussing convolution.
    $endgroup$
    – robert bristow-johnson
    Aug 27 '18 at 18:58













1












1








1





$begingroup$


I'm trying to calculate resultant function from adding two sinusoids:



$9sin(omega t + tfracpi3)$ and $-7sin(omega t - tfrac3pi8)$



The correct answer is $14.38sin(omega t + 1.444)$, but I get $14.38sin(omega t + 2.745)$.



My calculations are (first using cosine rule to obtain resultant $v$ as):
$sqrt9^2 + (-7)^2 - (2 cdot 9 cdot (-7) cdot cos(pi - tfracpi3 + tfrac3pi8)) = 14.38$



And the angle (using the sine rule):
$pi - arcsin(|-7| sin(pi - tfracpi3 + tfrac3pi8) / 14.38) = 157$ ° or $2.745$ radians.










share|improve this question











$endgroup$




I'm trying to calculate resultant function from adding two sinusoids:



$9sin(omega t + tfracpi3)$ and $-7sin(omega t - tfrac3pi8)$



The correct answer is $14.38sin(omega t + 1.444)$, but I get $14.38sin(omega t + 2.745)$.



My calculations are (first using cosine rule to obtain resultant $v$ as):
$sqrt9^2 + (-7)^2 - (2 cdot 9 cdot (-7) cdot cos(pi - tfracpi3 + tfrac3pi8)) = 14.38$



And the angle (using the sine rule):
$pi - arcsin(|-7| sin(pi - tfracpi3 + tfrac3pi8) / 14.38) = 157$ ° or $2.745$ radians.







continuous-signals






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Aug 27 '18 at 18:59









robert bristow-johnson

11k31649




11k31649










asked Aug 27 '18 at 17:59









Bord81Bord81

84




84







  • 2




    $begingroup$
    Your question will be much more readable if you format the math properly. I have edited a portion of the question to get you started, and you can find complete instructions here: dsp.stackexchange.com/editing-help#latex. I have also selected a better tag, since your question is unrelated to wavelets.
    $endgroup$
    – MBaz
    Aug 27 '18 at 18:13










  • $begingroup$
    Great! Just be mindful of the "" before "sin" and "cos". I fixed those for you.
    $endgroup$
    – MBaz
    Aug 27 '18 at 18:20










  • $begingroup$
    and lose the asterisks unless you're discussing convolution.
    $endgroup$
    – robert bristow-johnson
    Aug 27 '18 at 18:58












  • 2




    $begingroup$
    Your question will be much more readable if you format the math properly. I have edited a portion of the question to get you started, and you can find complete instructions here: dsp.stackexchange.com/editing-help#latex. I have also selected a better tag, since your question is unrelated to wavelets.
    $endgroup$
    – MBaz
    Aug 27 '18 at 18:13










  • $begingroup$
    Great! Just be mindful of the "" before "sin" and "cos". I fixed those for you.
    $endgroup$
    – MBaz
    Aug 27 '18 at 18:20










  • $begingroup$
    and lose the asterisks unless you're discussing convolution.
    $endgroup$
    – robert bristow-johnson
    Aug 27 '18 at 18:58







2




2




$begingroup$
Your question will be much more readable if you format the math properly. I have edited a portion of the question to get you started, and you can find complete instructions here: dsp.stackexchange.com/editing-help#latex. I have also selected a better tag, since your question is unrelated to wavelets.
$endgroup$
– MBaz
Aug 27 '18 at 18:13




$begingroup$
Your question will be much more readable if you format the math properly. I have edited a portion of the question to get you started, and you can find complete instructions here: dsp.stackexchange.com/editing-help#latex. I have also selected a better tag, since your question is unrelated to wavelets.
$endgroup$
– MBaz
Aug 27 '18 at 18:13












$begingroup$
Great! Just be mindful of the "" before "sin" and "cos". I fixed those for you.
$endgroup$
– MBaz
Aug 27 '18 at 18:20




$begingroup$
Great! Just be mindful of the "" before "sin" and "cos". I fixed those for you.
$endgroup$
– MBaz
Aug 27 '18 at 18:20












$begingroup$
and lose the asterisks unless you're discussing convolution.
$endgroup$
– robert bristow-johnson
Aug 27 '18 at 18:58




$begingroup$
and lose the asterisks unless you're discussing convolution.
$endgroup$
– robert bristow-johnson
Aug 27 '18 at 18:58










2 Answers
2






active

oldest

votes


















1












$begingroup$

This is a trigonometry question, but can also be solved using complex exponentials , which makes it a more DSP type.



We shall use the identitiy:
$$ sin(phi) = frace^jphi - e^-jphi 2j $$



or the more general case:
$$ sin(omega t + phi) = frace^jomega t e^jphi - e^-jomega t e^-jphi 2j $$



and further more general case:
$$
beginalign
|K| sin(omega t + phi + theta_k) &= |K|frace^jomega t e^jphie^jtheta_k - e^-jomega t e^-jphie^-jtheta_k 2j \
&= frace^jomega t e^jphiK - e^-jomega t e^-jphiK^* 2j tag1\
endalign
$$



where $K$ is a complex constant defined as $K = K_r + j K_i = |K| e^jtheta_k $ both in rectangular and polar forms.



Now proceed in decomposing the given signal into complex exponentials:



$$
beginalign
x(t) &= 9 sin(omega t + pi/3) - 7 sin(omega t - 3pi/8) \
&= (9/2j)left( e^jomega t e^jpi/3 - e^-jomega t e^-jpi/3 right) - (7/2j)left( e^jomega t e^-j3pi/8 - e^-jomega t e^j3pi/8 right) \
&= frac e^jomega tleft[9 e^jpi/3 - 7e^-3pi/8 right] - e^-jomega tleft[ 9 e^-jpi/3 - 7e^3pi/8 right] 2j tag2\
&= frac e^jomega tK - e^-jomega tK^* 2j\
endalign
$$



Now denoting $9 e^jpi/3 - 7e^-j3pi/8 = K$, the last line, Eq(2) becomes similar to Eq(1). Now all you need to do is find the magnitude and phase angle of the complex number $K$, which are :



$$ K = 9 e^jpi/3 - 7e^j3pi/8 = 1.8212 + 14.2614 j $$
$$ |K| = 14.3772 $$
$$ theta_k = 1.4438 ~~~text radians $$



Plugging these values gives you the final answer :



$$boxedsin(omega t + theta_k) = 14.38 sin(omega t + 1.4438) $$






share|improve this answer











$endgroup$








  • 1




    $begingroup$
    yes, thank you for the great explanation!
    $endgroup$
    – Bord81
    Aug 27 '18 at 19:59






  • 1




    $begingroup$
    Still need some points, but will surely do!)
    $endgroup$
    – Bord81
    Aug 27 '18 at 20:02










  • $begingroup$
    @Fat32 There may be a typo: you give $|K|=14.3772$, but then use $14.438$ in the final equation?
    $endgroup$
    – MBaz
    Aug 27 '18 at 21:00










  • $begingroup$
    @MBaz yes there is ! thanks, let me correct.
    $endgroup$
    – Fat32
    Aug 27 '18 at 21:15


















1












$begingroup$

The easiest way (to my mind) to solve the problem is to



  • Use the identity $sin(Apm B) = sin A cos B pm cos A sin B$, substituting the known numerical values of $cos B$ and $sin B$,


  • Gathering the results to express your sum of sinusoids in the form of $C sin A + D cos A$,


  • Expressing the resulting function as $sqrtC^2+D^2 sinleft(omega t + thetaright)$






share|improve this answer











$endgroup$












  • $begingroup$
    That's more or less the way I'm doing it, but the question is I can't figure out the θ.
    $endgroup$
    – Bord81
    Aug 27 '18 at 18:38










  • $begingroup$
    Hint: Set $fracCsqrtC^2+D^2 = cos(theta), fracDsqrtC^2+D^2 = sin(theta) $ and solve $tan(theta)=frac DC$ for $theta$.
    $endgroup$
    – Dilip Sarwate
    Aug 27 '18 at 18:45











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "295"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f51545%2fadding-subtracting-sinusoids%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

This is a trigonometry question, but can also be solved using complex exponentials , which makes it a more DSP type.



We shall use the identitiy:
$$ sin(phi) = frace^jphi - e^-jphi 2j $$



or the more general case:
$$ sin(omega t + phi) = frace^jomega t e^jphi - e^-jomega t e^-jphi 2j $$



and further more general case:
$$
beginalign
|K| sin(omega t + phi + theta_k) &= |K|frace^jomega t e^jphie^jtheta_k - e^-jomega t e^-jphie^-jtheta_k 2j \
&= frace^jomega t e^jphiK - e^-jomega t e^-jphiK^* 2j tag1\
endalign
$$



where $K$ is a complex constant defined as $K = K_r + j K_i = |K| e^jtheta_k $ both in rectangular and polar forms.



Now proceed in decomposing the given signal into complex exponentials:



$$
beginalign
x(t) &= 9 sin(omega t + pi/3) - 7 sin(omega t - 3pi/8) \
&= (9/2j)left( e^jomega t e^jpi/3 - e^-jomega t e^-jpi/3 right) - (7/2j)left( e^jomega t e^-j3pi/8 - e^-jomega t e^j3pi/8 right) \
&= frac e^jomega tleft[9 e^jpi/3 - 7e^-3pi/8 right] - e^-jomega tleft[ 9 e^-jpi/3 - 7e^3pi/8 right] 2j tag2\
&= frac e^jomega tK - e^-jomega tK^* 2j\
endalign
$$



Now denoting $9 e^jpi/3 - 7e^-j3pi/8 = K$, the last line, Eq(2) becomes similar to Eq(1). Now all you need to do is find the magnitude and phase angle of the complex number $K$, which are :



$$ K = 9 e^jpi/3 - 7e^j3pi/8 = 1.8212 + 14.2614 j $$
$$ |K| = 14.3772 $$
$$ theta_k = 1.4438 ~~~text radians $$



Plugging these values gives you the final answer :



$$boxedsin(omega t + theta_k) = 14.38 sin(omega t + 1.4438) $$






share|improve this answer











$endgroup$








  • 1




    $begingroup$
    yes, thank you for the great explanation!
    $endgroup$
    – Bord81
    Aug 27 '18 at 19:59






  • 1




    $begingroup$
    Still need some points, but will surely do!)
    $endgroup$
    – Bord81
    Aug 27 '18 at 20:02










  • $begingroup$
    @Fat32 There may be a typo: you give $|K|=14.3772$, but then use $14.438$ in the final equation?
    $endgroup$
    – MBaz
    Aug 27 '18 at 21:00










  • $begingroup$
    @MBaz yes there is ! thanks, let me correct.
    $endgroup$
    – Fat32
    Aug 27 '18 at 21:15















1












$begingroup$

This is a trigonometry question, but can also be solved using complex exponentials , which makes it a more DSP type.



We shall use the identitiy:
$$ sin(phi) = frace^jphi - e^-jphi 2j $$



or the more general case:
$$ sin(omega t + phi) = frace^jomega t e^jphi - e^-jomega t e^-jphi 2j $$



and further more general case:
$$
beginalign
|K| sin(omega t + phi + theta_k) &= |K|frace^jomega t e^jphie^jtheta_k - e^-jomega t e^-jphie^-jtheta_k 2j \
&= frace^jomega t e^jphiK - e^-jomega t e^-jphiK^* 2j tag1\
endalign
$$



where $K$ is a complex constant defined as $K = K_r + j K_i = |K| e^jtheta_k $ both in rectangular and polar forms.



Now proceed in decomposing the given signal into complex exponentials:



$$
beginalign
x(t) &= 9 sin(omega t + pi/3) - 7 sin(omega t - 3pi/8) \
&= (9/2j)left( e^jomega t e^jpi/3 - e^-jomega t e^-jpi/3 right) - (7/2j)left( e^jomega t e^-j3pi/8 - e^-jomega t e^j3pi/8 right) \
&= frac e^jomega tleft[9 e^jpi/3 - 7e^-3pi/8 right] - e^-jomega tleft[ 9 e^-jpi/3 - 7e^3pi/8 right] 2j tag2\
&= frac e^jomega tK - e^-jomega tK^* 2j\
endalign
$$



Now denoting $9 e^jpi/3 - 7e^-j3pi/8 = K$, the last line, Eq(2) becomes similar to Eq(1). Now all you need to do is find the magnitude and phase angle of the complex number $K$, which are :



$$ K = 9 e^jpi/3 - 7e^j3pi/8 = 1.8212 + 14.2614 j $$
$$ |K| = 14.3772 $$
$$ theta_k = 1.4438 ~~~text radians $$



Plugging these values gives you the final answer :



$$boxedsin(omega t + theta_k) = 14.38 sin(omega t + 1.4438) $$






share|improve this answer











$endgroup$








  • 1




    $begingroup$
    yes, thank you for the great explanation!
    $endgroup$
    – Bord81
    Aug 27 '18 at 19:59






  • 1




    $begingroup$
    Still need some points, but will surely do!)
    $endgroup$
    – Bord81
    Aug 27 '18 at 20:02










  • $begingroup$
    @Fat32 There may be a typo: you give $|K|=14.3772$, but then use $14.438$ in the final equation?
    $endgroup$
    – MBaz
    Aug 27 '18 at 21:00










  • $begingroup$
    @MBaz yes there is ! thanks, let me correct.
    $endgroup$
    – Fat32
    Aug 27 '18 at 21:15













1












1








1





$begingroup$

This is a trigonometry question, but can also be solved using complex exponentials , which makes it a more DSP type.



We shall use the identitiy:
$$ sin(phi) = frace^jphi - e^-jphi 2j $$



or the more general case:
$$ sin(omega t + phi) = frace^jomega t e^jphi - e^-jomega t e^-jphi 2j $$



and further more general case:
$$
beginalign
|K| sin(omega t + phi + theta_k) &= |K|frace^jomega t e^jphie^jtheta_k - e^-jomega t e^-jphie^-jtheta_k 2j \
&= frace^jomega t e^jphiK - e^-jomega t e^-jphiK^* 2j tag1\
endalign
$$



where $K$ is a complex constant defined as $K = K_r + j K_i = |K| e^jtheta_k $ both in rectangular and polar forms.



Now proceed in decomposing the given signal into complex exponentials:



$$
beginalign
x(t) &= 9 sin(omega t + pi/3) - 7 sin(omega t - 3pi/8) \
&= (9/2j)left( e^jomega t e^jpi/3 - e^-jomega t e^-jpi/3 right) - (7/2j)left( e^jomega t e^-j3pi/8 - e^-jomega t e^j3pi/8 right) \
&= frac e^jomega tleft[9 e^jpi/3 - 7e^-3pi/8 right] - e^-jomega tleft[ 9 e^-jpi/3 - 7e^3pi/8 right] 2j tag2\
&= frac e^jomega tK - e^-jomega tK^* 2j\
endalign
$$



Now denoting $9 e^jpi/3 - 7e^-j3pi/8 = K$, the last line, Eq(2) becomes similar to Eq(1). Now all you need to do is find the magnitude and phase angle of the complex number $K$, which are :



$$ K = 9 e^jpi/3 - 7e^j3pi/8 = 1.8212 + 14.2614 j $$
$$ |K| = 14.3772 $$
$$ theta_k = 1.4438 ~~~text radians $$



Plugging these values gives you the final answer :



$$boxedsin(omega t + theta_k) = 14.38 sin(omega t + 1.4438) $$






share|improve this answer











$endgroup$



This is a trigonometry question, but can also be solved using complex exponentials , which makes it a more DSP type.



We shall use the identitiy:
$$ sin(phi) = frace^jphi - e^-jphi 2j $$



or the more general case:
$$ sin(omega t + phi) = frace^jomega t e^jphi - e^-jomega t e^-jphi 2j $$



and further more general case:
$$
beginalign
|K| sin(omega t + phi + theta_k) &= |K|frace^jomega t e^jphie^jtheta_k - e^-jomega t e^-jphie^-jtheta_k 2j \
&= frace^jomega t e^jphiK - e^-jomega t e^-jphiK^* 2j tag1\
endalign
$$



where $K$ is a complex constant defined as $K = K_r + j K_i = |K| e^jtheta_k $ both in rectangular and polar forms.



Now proceed in decomposing the given signal into complex exponentials:



$$
beginalign
x(t) &= 9 sin(omega t + pi/3) - 7 sin(omega t - 3pi/8) \
&= (9/2j)left( e^jomega t e^jpi/3 - e^-jomega t e^-jpi/3 right) - (7/2j)left( e^jomega t e^-j3pi/8 - e^-jomega t e^j3pi/8 right) \
&= frac e^jomega tleft[9 e^jpi/3 - 7e^-3pi/8 right] - e^-jomega tleft[ 9 e^-jpi/3 - 7e^3pi/8 right] 2j tag2\
&= frac e^jomega tK - e^-jomega tK^* 2j\
endalign
$$



Now denoting $9 e^jpi/3 - 7e^-j3pi/8 = K$, the last line, Eq(2) becomes similar to Eq(1). Now all you need to do is find the magnitude and phase angle of the complex number $K$, which are :



$$ K = 9 e^jpi/3 - 7e^j3pi/8 = 1.8212 + 14.2614 j $$
$$ |K| = 14.3772 $$
$$ theta_k = 1.4438 ~~~text radians $$



Plugging these values gives you the final answer :



$$boxedsin(omega t + theta_k) = 14.38 sin(omega t + 1.4438) $$







share|improve this answer














share|improve this answer



share|improve this answer








edited Aug 27 '18 at 21:16

























answered Aug 27 '18 at 18:57









Fat32Fat32

15.5k31232




15.5k31232







  • 1




    $begingroup$
    yes, thank you for the great explanation!
    $endgroup$
    – Bord81
    Aug 27 '18 at 19:59






  • 1




    $begingroup$
    Still need some points, but will surely do!)
    $endgroup$
    – Bord81
    Aug 27 '18 at 20:02










  • $begingroup$
    @Fat32 There may be a typo: you give $|K|=14.3772$, but then use $14.438$ in the final equation?
    $endgroup$
    – MBaz
    Aug 27 '18 at 21:00










  • $begingroup$
    @MBaz yes there is ! thanks, let me correct.
    $endgroup$
    – Fat32
    Aug 27 '18 at 21:15












  • 1




    $begingroup$
    yes, thank you for the great explanation!
    $endgroup$
    – Bord81
    Aug 27 '18 at 19:59






  • 1




    $begingroup$
    Still need some points, but will surely do!)
    $endgroup$
    – Bord81
    Aug 27 '18 at 20:02










  • $begingroup$
    @Fat32 There may be a typo: you give $|K|=14.3772$, but then use $14.438$ in the final equation?
    $endgroup$
    – MBaz
    Aug 27 '18 at 21:00










  • $begingroup$
    @MBaz yes there is ! thanks, let me correct.
    $endgroup$
    – Fat32
    Aug 27 '18 at 21:15







1




1




$begingroup$
yes, thank you for the great explanation!
$endgroup$
– Bord81
Aug 27 '18 at 19:59




$begingroup$
yes, thank you for the great explanation!
$endgroup$
– Bord81
Aug 27 '18 at 19:59




1




1




$begingroup$
Still need some points, but will surely do!)
$endgroup$
– Bord81
Aug 27 '18 at 20:02




$begingroup$
Still need some points, but will surely do!)
$endgroup$
– Bord81
Aug 27 '18 at 20:02












$begingroup$
@Fat32 There may be a typo: you give $|K|=14.3772$, but then use $14.438$ in the final equation?
$endgroup$
– MBaz
Aug 27 '18 at 21:00




$begingroup$
@Fat32 There may be a typo: you give $|K|=14.3772$, but then use $14.438$ in the final equation?
$endgroup$
– MBaz
Aug 27 '18 at 21:00












$begingroup$
@MBaz yes there is ! thanks, let me correct.
$endgroup$
– Fat32
Aug 27 '18 at 21:15




$begingroup$
@MBaz yes there is ! thanks, let me correct.
$endgroup$
– Fat32
Aug 27 '18 at 21:15











1












$begingroup$

The easiest way (to my mind) to solve the problem is to



  • Use the identity $sin(Apm B) = sin A cos B pm cos A sin B$, substituting the known numerical values of $cos B$ and $sin B$,


  • Gathering the results to express your sum of sinusoids in the form of $C sin A + D cos A$,


  • Expressing the resulting function as $sqrtC^2+D^2 sinleft(omega t + thetaright)$






share|improve this answer











$endgroup$












  • $begingroup$
    That's more or less the way I'm doing it, but the question is I can't figure out the θ.
    $endgroup$
    – Bord81
    Aug 27 '18 at 18:38










  • $begingroup$
    Hint: Set $fracCsqrtC^2+D^2 = cos(theta), fracDsqrtC^2+D^2 = sin(theta) $ and solve $tan(theta)=frac DC$ for $theta$.
    $endgroup$
    – Dilip Sarwate
    Aug 27 '18 at 18:45
















1












$begingroup$

The easiest way (to my mind) to solve the problem is to



  • Use the identity $sin(Apm B) = sin A cos B pm cos A sin B$, substituting the known numerical values of $cos B$ and $sin B$,


  • Gathering the results to express your sum of sinusoids in the form of $C sin A + D cos A$,


  • Expressing the resulting function as $sqrtC^2+D^2 sinleft(omega t + thetaright)$






share|improve this answer











$endgroup$












  • $begingroup$
    That's more or less the way I'm doing it, but the question is I can't figure out the θ.
    $endgroup$
    – Bord81
    Aug 27 '18 at 18:38










  • $begingroup$
    Hint: Set $fracCsqrtC^2+D^2 = cos(theta), fracDsqrtC^2+D^2 = sin(theta) $ and solve $tan(theta)=frac DC$ for $theta$.
    $endgroup$
    – Dilip Sarwate
    Aug 27 '18 at 18:45














1












1








1





$begingroup$

The easiest way (to my mind) to solve the problem is to



  • Use the identity $sin(Apm B) = sin A cos B pm cos A sin B$, substituting the known numerical values of $cos B$ and $sin B$,


  • Gathering the results to express your sum of sinusoids in the form of $C sin A + D cos A$,


  • Expressing the resulting function as $sqrtC^2+D^2 sinleft(omega t + thetaright)$






share|improve this answer











$endgroup$



The easiest way (to my mind) to solve the problem is to



  • Use the identity $sin(Apm B) = sin A cos B pm cos A sin B$, substituting the known numerical values of $cos B$ and $sin B$,


  • Gathering the results to express your sum of sinusoids in the form of $C sin A + D cos A$,


  • Expressing the resulting function as $sqrtC^2+D^2 sinleft(omega t + thetaright)$







share|improve this answer














share|improve this answer



share|improve this answer








edited Aug 27 '18 at 21:19









Fat32

15.5k31232




15.5k31232










answered Aug 27 '18 at 18:28









Dilip SarwateDilip Sarwate

13.2k12463




13.2k12463











  • $begingroup$
    That's more or less the way I'm doing it, but the question is I can't figure out the θ.
    $endgroup$
    – Bord81
    Aug 27 '18 at 18:38










  • $begingroup$
    Hint: Set $fracCsqrtC^2+D^2 = cos(theta), fracDsqrtC^2+D^2 = sin(theta) $ and solve $tan(theta)=frac DC$ for $theta$.
    $endgroup$
    – Dilip Sarwate
    Aug 27 '18 at 18:45

















  • $begingroup$
    That's more or less the way I'm doing it, but the question is I can't figure out the θ.
    $endgroup$
    – Bord81
    Aug 27 '18 at 18:38










  • $begingroup$
    Hint: Set $fracCsqrtC^2+D^2 = cos(theta), fracDsqrtC^2+D^2 = sin(theta) $ and solve $tan(theta)=frac DC$ for $theta$.
    $endgroup$
    – Dilip Sarwate
    Aug 27 '18 at 18:45
















$begingroup$
That's more or less the way I'm doing it, but the question is I can't figure out the θ.
$endgroup$
– Bord81
Aug 27 '18 at 18:38




$begingroup$
That's more or less the way I'm doing it, but the question is I can't figure out the θ.
$endgroup$
– Bord81
Aug 27 '18 at 18:38












$begingroup$
Hint: Set $fracCsqrtC^2+D^2 = cos(theta), fracDsqrtC^2+D^2 = sin(theta) $ and solve $tan(theta)=frac DC$ for $theta$.
$endgroup$
– Dilip Sarwate
Aug 27 '18 at 18:45





$begingroup$
Hint: Set $fracCsqrtC^2+D^2 = cos(theta), fracDsqrtC^2+D^2 = sin(theta) $ and solve $tan(theta)=frac DC$ for $theta$.
$endgroup$
– Dilip Sarwate
Aug 27 '18 at 18:45


















draft saved

draft discarded
















































Thanks for contributing an answer to Signal Processing Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdsp.stackexchange.com%2fquestions%2f51545%2fadding-subtracting-sinusoids%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

ữḛḳṊẴ ẋ,Ẩṙ,ỹḛẪẠứụỿṞṦ,Ṉẍừ,ứ Ị,Ḵ,ṏ ṇỪḎḰṰọửḊ ṾḨḮữẑỶṑỗḮṣṉẃ Ữẩụ,ṓ,ḹẕḪḫỞṿḭ ỒṱṨẁṋṜ ḅẈ ṉ ứṀḱṑỒḵ,ḏ,ḊḖỹẊ Ẻḷổ,ṥ ẔḲẪụḣể Ṱ ḭỏựẶ Ồ Ṩ,ẂḿṡḾồ ỗṗṡịṞẤḵṽẃ ṸḒẄẘ,ủẞẵṦṟầṓế

⃀⃉⃄⃅⃍,⃂₼₡₰⃉₡₿₢⃉₣⃄₯⃊₮₼₹₱₦₷⃄₪₼₶₳₫⃍₽ ₫₪₦⃆₠₥⃁₸₴₷⃊₹⃅⃈₰⃁₫ ⃎⃍₩₣₷ ₻₮⃊⃀⃄⃉₯,⃏⃊,₦⃅₪,₼⃀₾₧₷₾ ₻ ₸₡ ₾,₭⃈₴⃋,€⃁,₩ ₺⃌⃍⃁₱⃋⃋₨⃊⃁⃃₼,⃎,₱⃍₲₶₡ ⃍⃅₶₨₭,⃉₭₾₡₻⃀ ₼₹⃅₹,₻₭ ⃌