Number of (distinct) knots with a bounded number of crossings

Number of (distinct) knots with a bounded number of crossings



The title pretty much covers it: are there good (asymptotic) estimates on the number of knot types whose projection has at most $N$ crossings? Similar question with "projection" replaced by "alternating projection".




1 Answer
1



Let $k(n)$ denote the number of prime knots with $n$ crossings, $l(n)$ the number of prime links with $n$ crossings, $a(n)$ the number of alternating prime links with $n$ crossings, and $ak(n)$ the number of prime alternating knots (all unoriented and unordered).



Clearly from inclusion of sets $ak(n)leq a(n)leq l(n)$ and $ak(n)leq k(n)leq l(n)$.



Then we have



$$2.68 leq liminf_nto infty k(n)^frac1n leq liminf_nto infty l(n)^frac1n leq 10.398...,$$



where the left is due to Welsh based on Ernst-Sumners (and only counts the growth of 2-bridge knots), and the right estimate is due to Stoimenow.



For alternating knots, one has the same lower bound since 2-bridge knots are alternating. So one has



$$2.68 leq liminf_nto infty ak(n)^frac1n leq lim_nto infty a(n)^frac1n = 6.14793...,$$
the right upper bound coming from Sundberg-Thistlethwaite.



From estimates on the growth of prime knots with $n$ crossings, one should be able to obtain upper bounds on the growth of all knots with $n$ crossings via the prime decomposition. Improved lower bounds over the prime growth are trickier, since we don’t know that crossing number is additive under connect sum.



Thanks for contributing an answer to MathOverflow!



But avoid



Use MathJax to format equations. MathJax reference.



To learn more, see our tips on writing great answers.



Required, but never shown



Required, but never shown




By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.

Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

Edmonton

Crossroads (UK TV series)