Corundum

































































Corundum
Several corundum crystals.jpg
General
CategoryOxide mineral – Hematite group

Formula
.mw-parser-output .noboldfont-weight:normal
(repeating unit)

Aluminium oxide, Al
2
O
3

Strunz classification4.CB.05
Dana classification4.3.1.1
Crystal systemTrigonal
Crystal classHexagonal scalenohedral (3m)
H-M symbol: (3 2/m)
Space group
R3c
Unit cella = 4.75 Å, c = 12.982 Å; Z = 6
Identification
ColorColorless, gray, brown; pink to red, orange, yellow, green, blue, violet; may be color zoned, asteriated mainly grey and brown
Crystal habitSteep bipyramidal, tabular, prismatic, rhombohedral crystals, massive or granular
TwinningPolysynthetic twinning common
CleavageNone – parting in 3 directions
FractureConchoidal to uneven
TenacityBrittle

Mohs scale
hardness
9 (defining mineral)[1]
LusterAdamantine to vitreous
StreakWhite
DiaphaneityTransparent, translucent to opaque
Specific gravity3.95–4.10
Optical propertiesUniaxial (–)
Refractive indexnω = 1.767–1.772
nε = 1.759–1.763
PleochroismNone
Melting point2044 °C
FusibilityInfusible
SolubilityInsoluble
Alters toMay alter to mica on surfaces causing a decrease in hardness
Other characteristicsMay fluoresce or phosphoresce under UV light
References
[2][3][4][5]
Major varieties
SapphireAny color except red
RubyRed
EmeryBlack granular corundum intimately mixed with magnetite, hematite, or hercynite

Corundum is a crystalline form of aluminium oxide (Al
2
O
3
) typically containing traces of iron, titanium, vanadium and chromium.[2][3] It is a rock-forming mineral. It is also a naturally transparent material, but can have different colors depending on the presence of transition metal impurities in its crystalline structure.[6] Corundum has two primary gem varieties: ruby and sapphire. Rubies are red due to the presence of chromium, and sapphires exhibit a range of colors depending on what transition metal is present.[6] A rare type of sapphire, padparadscha sapphire, is pink-orange.


The name "corundum" is derived from the Tamil word Kurundam, which in turn derives from the Sanskrit Kuruvinda.[7]


Because of corundum's hardness (pure corundum is defined to have 9.0 on the Mohs scale), it can scratch almost every other mineral. It is commonly used as an abrasive on everything from sandpaper to large tools used in machining metals, plastics, and wood. Some emery is a mix of corundum and other substances, and the mix is less abrasive, with an average Mohs hardness of 8.0.


In addition to its hardness, corundum has a density of 4.02 g/cm3 (0.145 lb/cu in), which is unusually high for a transparent mineral composed of the low-atomic mass elements aluminium and oxygen.[8]




Contents





  • 1 Geology and occurrence


  • 2 Synthetic corundum


  • 3 Structure and physical properties


  • 4 References




Geology and occurrence




Corundum from Brazil, size about 2 cm × 3 cm (0.8 in × 1 in).


Corundum occurs as a mineral in mica schist, gneiss, and some marbles in metamorphic terranes. It also occurs in low silica igneous syenite and nepheline syenite intrusives. Other occurrences are as masses adjacent to ultramafic intrusives, associated with lamprophyre dikes and as large crystals in pegmatites.[5] It commonly occurs as a detrital mineral in stream and beach sands because of its hardness and resistance to weathering.[5] The largest documented single crystal of corundum measured about 65×40×40 cm (26×16×16 in), and weighed 152 kg (335 lb).[9] The record has since been surpassed by certain synthetic boules.[10]


Corundum for abrasives is mined in Zimbabwe, Pakistan, Afghanistan, Russia, Sri Lanka, and India. Historically it was mined from deposits associated with dunites in North Carolina, US and from a nepheline syenite in Craigmont, Ontario.[5]Emery-grade corundum is found on the Greek island of Naxos and near Peekskill, New York, US. Abrasive corundum is synthetically manufactured from bauxite.[5] Four corundum axes dating back to 2500 BCE from the Liangzhou culture have been discovered in China.[11]



Synthetic corundum


In 1837, Marc Antoine Gaudin made the first synthetic rubies by fusing alumina at a high temperature with a small amount of chromium as a pigment.[12] In 1847, Ebelmen made white synthetic sapphires by fusing alumina in boric acid. In 1877 Frenic and Freil made crystal corundum from which small stones could be cut. Frimy and Auguste Verneuil manufactured artificial ruby by fusing BaF
2
and Al
2
O
3
with a little chromium at temperatures above 2,000 °C (3,632 °F). In 1903, Verneuil announced he could produce synthetic rubies on a commercial scale using this flame fusion process.[13]


The Verneuil process allows the production of flawless single-crystal sapphires, rubies and other corundum gems of much larger size than normally found in nature. It is also possible to grow gem-quality synthetic corundum by flux-growth and hydrothermal synthesis. Because of the simplicity of the methods involved in corundum synthesis, large quantities of these crystals have become available on the market causing a significant reduction of price in recent years. Apart from ornamental uses, synthetic corundum is also used to produce mechanical parts (tubes, rods, bearings, and other machined parts), scratch-resistant optics, scratch-resistant watch crystals, instrument windows for satellites and spacecraft (because of its transparency in the ultraviolet to infrared range), and laser components.



Structure and physical properties




Crystal structure of corundum




Molar volume vs. pressure at room temperature.


Corundum crystallizes with trigonal symmetry in the space group R3c and has the lattice parameters a = 4.75 Å and c = 12.982 Å at standard conditions. The unit cell contains six formula units.


The toughness of corundum is sensitive to surface roughness[14][15] and crystallographic orientation.[16] It may be 6-7 MPa·m1/2 for synthetic crystals,[16] and ~4 for natural[17]


In the lattice of corundum, the oxygen atoms form a slightly distorted hexagonal close packing, in which two-thirds of the gaps between the octahedra are occupied by aluminum ions.



References






  1. ^ "Mohs' scale of hardness". Collector's corner. Mineralogical Society of America. Retrieved 10 January 2014..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ ab Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C., eds. (1997). "Corundum". Handbook of Mineralogy (PDF). III(Halides, Hydroxides, Oxides). Chantilly, VA, US: Mineralogical Society of America. ISBN 0962209724.


  3. ^ ab Corundum. Mindat.org


  4. ^ Corundum. Webmineral


  5. ^ abcde Hurlbut, Cornelius S.; Klein, Cornelis, 1985, Manual of Mineralogy, 20th ed., Wiley, pp. 300–302
    ISBN 0-471-80580-7



  6. ^ ab Giuliani, Gaston; Ohnenstetter, Daniel; Fallick, Anthony E.; Groat, Lee; Fagan; Andrew J (2014). "The Geology and Genesis of Gem Corundum Deposits". Gem Corundum. Research Gate: Mineralogical Association of Canada. pp. 37–38. ISBN 978 - 0 - 921294 - 54 - 2.


  7. ^ Harper, Douglas. "corundum". Online Etymology Dictionary.


  8. ^ The Mineral Corundum. galleries.com


  9. ^ Rickwood, P. C. (1981). "The largest crystals" (PDF). American Mineralogist. 66: 885–907.


  10. ^ Rubicon Technology Grows 200kg "Super Boule", LED Inside, April 21, 2009


  11. ^ "Chinese made first use of diamond". BBC. BBC. May 2005.


  12. ^ Duroc-Danner, J. M. (2011). "Untreated yellowish orange sapphire exhibiting its natural colour" (PDF). Journal of Gemmology. 32: 175–178. doi:10.15506/jog.2011.32.5.174. Archived from the original (PDF) on 2013-05-16.


  13. ^ "Bahadur: a Handbook of Precious Stones". 1943. Retrieved 2007-08-19.


  14. ^ Farzin-Nia, Farrokh; Sterrett, Terry; Sirney, Ron. "Effect of machining on fracture toughness of corundum". Journal of Materials Science. 25 (5): 2527–2531. doi:10.1007/bf00638054.


  15. ^ "Fracture-Strength Anisotropy of Sapphire". Journal of the American Ceramic Society. 59: 59–61. doi:10.1111/j.1151-2916.1976.tb09390.x.


  16. ^ ab "Fracture of Sapphire". Journal of the American Ceramic Society. 52: 485–491. doi:10.1111/j.1151-2916.1969.tb09199.x.


  17. ^ "Corundum, Aluminum Oxide, Alumina, 99.9%, Al 2 O 3". www.matweb.com.








Popular posts from this blog

𛂒𛀶,𛀽𛀑𛂀𛃧𛂓𛀙𛃆𛃑𛃷𛂟𛁡𛀢𛀟𛁤𛂽𛁕𛁪𛂟𛂯,𛁞𛂧𛀴𛁄𛁠𛁼𛂿𛀤 𛂘,𛁺𛂾𛃭𛃭𛃵𛀺,𛂣𛃍𛂖𛃶 𛀸𛃀𛂖𛁶𛁏𛁚 𛂢𛂞 𛁰𛂆𛀔,𛁸𛀽𛁓𛃋𛂇𛃧𛀧𛃣𛂐𛃇,𛂂𛃻𛃲𛁬𛃞𛀧𛃃𛀅 𛂭𛁠𛁡𛃇𛀷𛃓𛁥,𛁙𛁘𛁞𛃸𛁸𛃣𛁜,𛂛,𛃿,𛁯𛂘𛂌𛃛𛁱𛃌𛂈𛂇 𛁊𛃲,𛀕𛃴𛀜 𛀶𛂆𛀶𛃟𛂉𛀣,𛂐𛁞𛁾 𛁷𛂑𛁳𛂯𛀬𛃅,𛃶𛁼

Edmonton

Crossroads (UK TV series)